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Abstract
We present a new algorithm for optimizing geometric energies and computing positively oriented simplicial mappings. Our major
improvements over the state-of-the-art are: (i) introduction of new energies for repairing inverted and collapsed simplices; (ii)
adaptive partitioning of vertices into coordinate blocks with the blended local-global strategy for more efficient optimization and
(iii) introduction of the displacement norm for improving convergence criteria and for controlling block partitioning. Together
these improvements form the basis for the Adaptive Block Coordinate Descent (ABCD) algorithm aimed at robust geometric
optimization. ABCD achieves state-of-the-art results in distortion minimization, even under hard positional constraints and
highly distorted invalid initializations that contain thousands of collapsed and inverted elements. Starting with an invalid non-
injective initial map, ABCD behaves as a modified block coordinate descent up to the point where the current mapping is cleared
of invalid simplices. Then, the algorithm converges rapidly into the chosen iterative solver. Our method is very general, fast-
converging and easily parallelizable. We show over a wide range of 2D and 3D problems that our algorithm is more robust than
existing techniques for locally injective mapping.
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1. Introduction

Computing injective mappings with low distortions on triangu-
lated domains is a fundamental problem in computer graphics, ge-
ometrical modelling and physical simulations. This problem often
results in non-convex and non-linear optimization of geometric en-
ergies defined in a finite element manner on triangular and tetrahe-
dral meshes.

The existing solutions to the above problem typically fall into
two major categories: (1) map fixers: algorithms focused on the in-
jectivity of maps; and (2) core-solvers: iterative descent algorithms
focused on minimizing rotation-invariant energies. Map fixers are
aimed at repairing simplices that have folded over (foldovers) and
changed their orientation. The goal of map fixers is to repair all
foldovers of a non-injective map and restraining its geometric dis-
tortions into a finite range. Core solvers start from a one-to-one ini-
tialization and ensure that optimization results remain one-to-one,
at least locally. Efficient designs of map fixers and core-solvers have
been extensively studied by the computer graphics community. But
due to their inherent differences the treatment remained separate,

one would either provide a framework to solve the foldover problem
or the energy minimization problem. Nevertheless, both aspects of
the problem play crucial role in finding a good solution to a given ge-
ometric optimization. In this paper, we propose the Adaptive Block
Coordinate Descent (ABCD) algorithm that successfully tackles
both problems within the same routine. Our algorithm achieves
state-of-the-art results in distortion minimization even with highly
distorted invalid initializations that contain thousands of degenerate
and inverted elements. Consequently, compared with core-solvers,
our algorithm is much more robust. At the same time, compared
with recent map fixer methods, our algorithm achieves superior re-
sults, making some previously intractable problems applicable. The
core contributions of our algorithm are:

1. Introduction of new distortion measures designed for repairing
inverted and degenerate simplices, as well as modification of
classical energies to allow an efficient integration of these ener-
gies into the proposed framework.

2. An adaptive partitioning of vertices into blocks of varying sizes
according to the geometric configuration of the problem.
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Figure 1: Comparison of the alternating combination of LBD and BCQN (top) with ABCD(BCQN) (bottom) in 3D. The same initialization is
used for the three shown trials: unconstrained problem, two fixed anchors, two fixed endpoints (the second problem of Figure 18). We report
the number of inverted elements below each snapshot.

Is
om

et
ric

—
—
—
—

Figure 2: Free boundary parametrization with a noisy initializa-
tion (intentionally distorted Tutte map without flips). The 1-ring GD
denotes the gradient descent in blocks of single vertices; each block
receives a single GD iteration per cycle depicted in the plot.

3. An adaptively blended local-global strategy providing robust-
ness to highly distorted elements, while allowing employment
of state-of-the-art solvers for inducing global deformations.

4. A cured alternating optimization strategy designed to best ex-
ploit contributions 1–3 and provide enough flexibility for our al-
gorithm to be combined with other popular methods. This stage
includes number of novel sub-steps, such as an enhanced line
search filtering.

5. Introduction of displacement norm for improving convergence
criteria and for controlling the local-global blending.

2. Problem Formulation and Overview

We compute inversion-free simplicial maps that induce low distor-
tions. Let f : M ⊂ R

n → R
m be a piecewise affine mapping defined

on a mesh M with a m-dimensional simplex set C and a vertex set
V, and let x ∈ R

|V|m be the column stack of vertex positions under
f . We express a distortion energy of the mapping f [x] as a weighted
sum over simplices

E( f [x]) =
∑
c∈C

w(c)D( fc[x]), (1)

where w(c) are simplex weights, usually equal to volume(c), fc is
f ′s component on c and D is a given distortion measure invariant
to rotations and translations of source and target vertices. Denote

Figure 3: ABCD main stages: (a) Computing descent field of alter-
natively selected distortions D j = F, D̃, defined by (15) and (10);
(b) estimating partitioning threshold K; (c) vertex partitioning into
blocks B by Algorithm 1; (d) parallel optimization of (2) in coordi-
nate blocks B ∈ B.

by dfc the Jacobian of fc modulo a rigid transformation of c from
R
n to R

m. Then, we address the following distortion minimization
problem for 2 ≤ m ≤ n ≤ 3:

argmin
x

E( f [x]), (2)

such that: det(dfc) > 0, ∀c ∈ C, (3)

Ax = z, (4)

where (3) guarantees that f is free of inversions and (4) are the given
positional constraints.

Numerous first- and second-order techniques for solving (2) and
its unconstrained version have been developed. A typical geometric
solver updates target coordinates x via

x(t + �t ) = x(t ) + �td
(∇xE, ∇2

xE
)
, (5)

where d is the descent direction 〈d, ∇xE〉 < 0, expressed as a func-
tion of the gradient and the Hessian

∇xE = ∂E(x(t ))
∂x

, ∇2
xE = ∂2E(x(t ))

∂x2
. (6)

In first-order methods, d = d(∇E ) and it is computed, in gen-
eral, by pre-conditioning the gradient with a sparse proxy matrix,
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i.e. in unconstrained problems d is a solution of a sparse linear
system

Hd = −∇xE. (7)

If xi are vertex coordinates at iteration i, then updating x via (7) is
equivalent to minimizing the following quadratic proxy:

EH (x) = E(xi) + (
x− xi

)�∇xE + (
x− xi

)�
H

(
x− xi

)
/ 2. (8)

For example,H = I in the gradient descent (GD) [NSZ18, FLG15].
In Sobolev gradient descent (SGD), and in the related acceler-
ated quadratic proxy (AQP) [KGL16], H is chosen to be the rest
mesh Laplacian. The method of scalable locally injective map-
pings (SLIM) [RPPSH17] extends the local-global parametrization
[LX*08] to general distortions by introducing a weighted proxy
in the global step, which is equivalent to approximating H by
reweighed Laplacian. The geometric approach of [CBSS17] intro-
duces the Killing operator of discrete vector fields as an isometry-
aware pre-conditioner (AKVF).

Quasi-Newton methods [ZBK18, LBK17, SS15] optimize a
quadratic proxy constructed from gradients of both the current
and previous iterations, i.e. d = d(∇xEi, ∇xEi−1, . . . ). In particu-
lar, Zhu et al. [ZBK18] had proposed blended cured quasi-Newton
(BCQN) strategy of a gradual blending between AQP [KGL16]
and L-BFGS [SS15]. This approach benefits both from the rapid
progress of AQP at the first iterations, and having the super-linear
convergence of L-BFGS in the vicinity of the optimal point.

Similarly, second-order methods are based on ‘Newton’ update
step in (5), where d is the function of both ∇E and ∇2E. Since
the problem (2) is highly non-convex, these solvers compute pos-
itive semi-definite approximations of ∇2E, most commonly, using
the Hessian diagonal H = diag(∇2E(x)) in Jacobi GD [WY16]; by
projecting m(m+ 1) × m(m+ 1) blocks of ∇2E into PSD cone for
each simplex in projected Newton (PN)methods [LKK*18, LBK16,
TSIF05]. Specifically, in 2D, positive semi-definite H can be ob-
tained via complex problem formulation [GSC18, CW17], or by us-
ing the composite majorization (CM) [SPSH*17] technique and the
related closed-form expression of 2 × 2 Jacobian singular values.

Besides the aforementioned core-solvers, there are techniques
intended for accelerating existing optimization algorithms. For in-
stance, the update step in AQP is equipped with a Nesterov-like ac-
celeration [Nes83] that approximates x(t ) in (5) by an affine combi-
nation of the results from the current and previous iterations, x(t ) =
(1 + θ ) xi − θ xi−1. Progressive parametrization (PP) [LYNF18] ac-
celerates core-solvers by decomposing an initial map into intermedi-
ate mappings with bounded singular values. Anderson acceleration
[PDZ*18] adopts numerical analysis techniques for geometric opti-
mization by treating solvers as fixed-point iterations. The method is
intended for alternating local-global algorithms, such as [BDS*12,
BML*14], where in the local step, vertex coordinates are projected
into varying sets of positional constraints.

Despite the abundance of techniques, the vast majority of the
existing solvers are iterative algorithms that require an inversion-
free initialization of f in (2). Moreover, in most methods, f [xi]
needs to be kept free of foldovers for each iteration i ≥ 0. In view
of the above limitation, different strategies have been proposed

to keep f satisfying (3) during the optimization. These strategies
include: designing distortions with flip barriers [SS15, FLG15],
inversion-aware line search [SS15], the recently proposed barrier-
aware line search filtering [ZBK18] and employment of scaffold
meshes [LKK*18, JSP17].

For unconstrained 2D distortion optimization, such as
parametrization of disc-topology surfaces with free boundaries,
the required positively oriented initialization f 0 is readily avail-
able via the Tutte’s embedding [Tut63] and its variants [Flo03].
However, computing feasible f 0 may still be challenging in num-
ber of geometry processing applications, including 2D and 3D
shape deformations with positional constraints, shape matching
and volumetric parametrizations. Moreover, Tutte’s mapping to
unconvex regions cannot guarantee (3), while mapping complex
shapes to a disc and other convex domains usually yields huge
isometric distortions. Thus, producing f 0 free of foldovers often
costs many more additional iterations for a typical parametrization
algorithm. It therefore seems that mapping to domains that match
the structure of a source mesh should be a much better starting
point if the algorithm can fix occasional foldovers. Although there
is a number of recent studies on embedding triangle mesh onto
non-convex planar domains, our algorithm has unique properties: it
operates both in 2D and 3D; it employs hard positional constraints,
and therefore, unlike boundary first flattening (BFF) [SC18], it
interpolates the exactly prescribed boundary shape; ABCD updates
only vertex coordinates and, in contrast to the recently introduced
progressive embedding (PE) [SJZP19], our algorithm does not
involve mesh re-triangulation.

Among the recent studies that explicitly address unfeasible ini-
tializations are: bounding distortion mappings (BD and LBD)
[AL13, KABL15] and simplex assembly (SA) [FL16]. BD solves
the quadratic problem of constructing an optimal projection of f on
the bounded distortion space, whereas LBD enhances this strategy
by linearization of the BD space constraints and pre-factorization of
the obtained KKT matrix. SA [FL16] optimizes significantly larger
problem than (2), since its objective variables are linear and trans-
lation components of fc represented, per simplex, by n× n+ m un-
knowns instead of commonly employed m coordinates per vertex
(n ≥ m and, in general, |C| is much larger than |V| according to
Euler formula).

The method of [KABL14] can start with trivial maps and con-
verge to prescribed positional constraints, but it suffers from slow
performance of semi-definite programming. Weber et al. [WMZ12]
introduced the least square Beltrami (LSB) energy for computing
extremal quasi-conformal mappings. Optimization of LSB can be
initialized with foldovers, since the energy is finite on inverted tri-
angles. However, this method is limited to 2D and it does not extend
to other popular energies, such as symmetric Dirichlet energy Diso

[SS15] or AMIPS [FLG15].

The Autocuts algorithm [PTH*17], designed for a user-assisted
global parametrization, can handle non-injective initializations be-
cause it treats the input mesh as a triangle soup. Nevertheless, the
algorithm requires a consistent initial orientation of deformed tri-
angles. Moreover, this method operates on disassembled simplices
which, similarly to SA, significantly increases number of objec-
tive variables. Although the underlining homotopy approach for
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Figure 4: A typical ABCDworkflow: initialization with flips (in yel-
low), fixer, optimizer and final convergence. Dashed lines along de-
scent directions depict length of line search intervals (22).

multi-objective optimization performs well on middle-resolution
meshes, Autocuts supports only soft positional constraints in 2D and
does not extend to volumetric domains.

We propose a novel algorithm, ABCD, aimed at robust distor-
tion optimization. By robustness, we mean that our algorithm is
capable of solving challenging problems that previously available
methods struggle with. These problems include cases of highly dis-
torted, non-locally-injective, noisy initializations and mapping with
complex positional constraints. Our algorithm combines the best of
core-solvers (CM, PN, BCQN, AKVF, SLIM) and map fixers (BD,
LBD, SA) into unifiedAlgorithm 3.We show that, over a wide range
of test cases, ABCD achieves superior results than mere cascade or
alternating combinations of core-solvers and map fixers. Moreover,
since our algorithm is very general, it can be further improved by
employing novel acceleration techniques, such as PP [LYNF18].

For standard unconstrained problems, our algorithm behaves ex-
actly as an integrated core-solver (BCQN, AKVF, PN, etc.), except
for a very short period, typically two to three first iterations, for
which computational cost is negligible. In the presence of highly
distorted invalid initializations, ABCD passes through two phases:
the first one of cleaning foldovers, where distortions are optimized
in coordinate blocks of varying sizes, and the second stage of op-
timizing a positively oriented map, during which ABCD typically
behaves as a global solver. Our algorithm exhibits such flexibility
because, at each cycle, we adaptively modify coordinate blocks and
switch between different energies. Unlike the common notion of op-
timization theory, where ‘adaptiveness’ is referring to a proper se-
lection of block coordinate frames, we consider, instead, an adaptive
strategy of the block partitioning and an adaptive blending of local-
global solvers.

3. Distortion Measures

Distortion measures considered in (2) are rotation invariants which,
according to [RPPSH17, NSZ18], can be expressed as functions of
signed singular values σ1, . . . , σm of the Jacobian dfc:

D( fc) = D(σ1, . . . , σm). (9)

We assume w.l.o.g. that only σ1 can be negative in the signed
SVD of the Jacobian, dfc = Udiag(σ1, . . . , σm)V�. Thus, on a non-
degenerate simplex c, sign(σ1) = sign(det(dfc)).

The most common energies, considered in geometric optimiza-
tion, are measures of isometric (length-wise) [CPSS10, SS15,
FLG15, NSZ18] and conformal (angle-wise) [HG00, LPRM02,
DMA02, FLG15] distortions. Usually, due to existence of a barrier
term, these measures become infinite when det(dfc) ≤ 0. While this

prohibits appearance of new foldovers, it also prevents optimization
from fixing the existing ones. Therefore, we aim to modify existing
energies in such a way that both tasks of fixing invalid simplices
(inverted or collapsed) and preventing generation of new ones are
possible within the same procedure.

Denote by sc the orientation of simplex c at the iteration (i− 1),
i.e. sc = sign(det df i−1

c ); then we modify the original measure D as
follows:

D̃( fc) =

⎧⎪⎨⎪⎩
D(σ1, . . . , σm)

∞
minD

σ1 > 0, sc > 0,

σ1 ≤ 0, sc > 0,

sc ≤ 0,

(10)

where minD is the absolute minimum of distortion D. Namely, at
each iteration, we filter out the contribution of simplices that were
previously inverted, while on valid simplices, D̃ equals the original
measure plus the barrier term in order to prevent new foldovers. This
approach enables an efficient alternating optimization of classical
rotation-invariant energies and of measures designed for fixing in-
valid simplices (map fixer measures) without badly interfering with
each other so that our algorithm alternates between the two phases:
minimization of map fixer measures and optimization of distortions,
constructed by (10). We refer to these two phases as the fixer and
optimizer phases, respectively. Since orientation of a zero-volume
simplex is not well defined, we consider inverted simplices (flips)
and collapsed simplices as the two separate classes of illegally de-
formed elements. Next, we describe how map fixer measures are
devised to correct each of the two illegal deformations:

Inverted simplices: Assuming the positive orientation of the
source elements, a simplex c is inverted under f if

det (dfc) =
∏

σ j < 0. (11)

Rather than using binary measures, or infinite barrier terms that can
easily block optimization progress, we penalize both the number of
foldovers and their target volumes (areas). Since foldover volumes
are negative and proportional to det dfc, we consider the following
flip penalty measure:

Dflip(σ,�) =
{

� − ∏
σ j

∏
σ j ≤ 0,

0 else,
(12)

where � ≥ 0 is the uniform penalty cost of an inverted simplex.

Collapsed simplices: Similarly to Dflip, the collapsed simplex
penalty is the cost function of nearly zero-volume target elements

Dcollapse(σ, �) =
{

� ∃ j : |σ j| < ε,

0 else,
(13)

where ε is the singularity threshold. Unlike (12), Dcollapse contains
no smooth terms, and thus, we provide a separate definition of
its pseudo-gradient by devising how σ should be modified to un-
fold a degenerate simplex. Specifically, if dim(Ker(dfc)) = k, then
σm−k+1, . . . , σm = 0, and thus ∂Dcollapse/∂σ j should be non-zero for
m− k + 1 ≤ j ≤ m. Consequently, we set gradient entries as fol-
lows:

j = 1, . . . ,m :
∂Dcollapse

∂σ j
=

{
−1 |σ j| ≤ ε,

0 else.
(14)
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Figure 5: Comparing ABCD(AKVF) (bottom) with other methods and with simplified variants of ABCD(AKVF). Top to bottom: alternating
optimization of LBD and AKVF; global ABCD version (CD); ABCDwithout blending that includes constant K = ∞ and constantly alternating
thresholds K = ∞, 0; ABCD with F (σ, 10) and F (σ, 0). Each snapshot is annotated with the number of flipped and collapsed triangles,
denoted by ‘f.’ and ‘c.’, respectively.

For processing all invalid elements with a single measure, we
combine (12) and (13) into the invalid simplex penalty:

F (σ,�) =
{
Dflip(σ,�) σ1 < 0, σm ≥ ε,

Dcollapse(σ, �) else,
(15)

where we set a higher priority for penalizing flips, since minimizing
(12) is a more complex geometric problem than unfolding collapsed
elements.Measure (15) is design to behavewell in GD. In particular,
GD minimization of F either flips back foldovers, or shrinks them
to minimize magnitudes of their volumes (Figure 4).

Note that despiteF having non-differentiable points and separate
definitions of energy values and energy gradients, map fixer mea-
sures are fully compatible with the geometric optimization frame-
work. Particularly, Algorithm 3 receives D and ∇D in separate in-
puts and it can handle non-differentiable measures as long as these
two inputs are consistent.

At first glance, it seems reasonable to set � � 0 in (15), since
we are interested in minimizing the total number of invalid ele-
ments, rather than merely decreasing their total volume. However,
the smoothness of EF = ∑

w(c)F (σ,�) decreases in �. If � is
large enough, then EF is approximately equal to the number of in-
valid simplices times �. This quantity has a combinatorial struc-
ture, and thus minimizing EF with common geometric solvers is
not efficient for large �. Therefore, on average, the most significant

progress is achieved by setting � to be a tiny positive number. Our
experiments with different values of� are depicted in Figures 5 and
Figure S24 in the Supporting Information.

By definition, ∇F is non-zero only on vertices of invalid ele-
ments, often distributed in patterns of ‘islands’ surrounded by pos-
itively oriented simplices (see second row of Figure 17). Following
this observation, we suggest to construct block partitioning in which
vertices sharing only inverted simplices and the rest of vertices are
put in separate blocks. As discussed in the next section, our adaptive
coordinate descent strategy has a number of apparent advantages
over purely global or local approaches.

4. Local Versus Global Optimization

While most of optimization techniques are focused on approximat-
ing (1) with proxy energies, or on designing gradient preconditioner
in (5), we adopt a new viewpoint and address a different aspect of
the problem: How to divide objective variables x into blocks to at-
tain more efficient and robust optimization?

The vast majority of existing geometric solvers are global meth-
ods that update entire set of target coordinates simultaneously.
Among the few purely local methods are block coordinate de-
scent (BCD) strategies with constant small blocks [HG00, FLG15,
FL16, NSZ18]. Note that our terminology here is different from the
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A. Naitsat et al. / Adaptive Block Coordinate Descent for Distortion Optimization 365

Figure 6: Top, from left to right: Unconstrained swirl planar defor-
mation, initialized with foldovers, block partitioning in ABCD(GD)
for F and D̃iso energies, respectively. Bottom: We compare BCQN
and ABCD(BCQN) optimizations (left) of the constrained swirl de-
formation, initialized without flips (right).

Algorithm 1. Vertex partitioning into blocks

common notation of local-global solvers, such as [PDZ*18,
RPPSH17, LX*08], where an update (5) is performed in the global
stage, while auxiliary properties per simplex are computed in the lo-
cal one. We consider both the locality and the globality with respect
to the selection of x’s coordinate blocks in (5).

To highlight the importance of the raised question, consider a
toy model, depicted in Figure 2, where a simple 1-ring block GD
[HG00, NSZ18] easily outperforms much more advanced global
solvers. In general, the global strategy works well when descent
direction d is a smooth vector field. However, a noisy initializa-
tion produces chaotic gradients. Therefore, in this case, a global
descent update of (5) can easily get stuck in the line search stage,
since neighbouring vertices may be forced to move in completely
random directions. In particular, repairing initializations with many
flipped and collapsed simplices often introduces highly non-smooth
gradients, and thus, cannot be effectively handled by a global ap-
proach alone. Although [ZBK18] proposed some line search en-
hancements, where components of the global descent field d are
rescaled to increase the line search range, the global update of x
along d may still be subjected to an adverse coupling of vertices in
highly distorted initializations. Moreover, a sufficiently high noise

level in vertex position often leads to poor preconditioning due to
extremely ill-conditioned approximate Hessian. Hence, this issue
cannot be solved solely by filtering line search directions or using
other related approaches.

Another motivation for using an intelligent block partitioning
is derived from observing standard optimization problems with
Dirichlet positional constraints. This type of constraints often re-
sult in a natural block partition, where inner block boundaries pass
through fixed vertices (anchors) with vanishing descent directions.
Similar configurations occur in minimizing map fixer measures,
since they have non-zero gradients only on vertices adjacent to in-
valid elements. Optimizing one block of vertices has no effect on
vertices in another block if the boundary between the two blocks is
locked (see Figure 6 bottom). Therefore, in such cases, it is more
computationally efficient to employ BCD inherent parallelism for
processing different blocks of vertices in parallel.

However, local methods are not effective in dealing with prob-
lems where the decrease in a distortion energy can be achieved only
by modifying large groups of vertices, at once. These cases often
include complex shape deformations, such as the one depicted in
Figure 6, and surface parametrization with standard harmonic ini-
tializations. Apparently, as illustrated by Figure 5, distortion min-
imization can have mixed cases, where neither purely global, nor
local approaches are suitable, and thus some blending of two oppo-
site strategies should be adopted.

5. Adaptive Block Partitioning

In this section, we propose on adaptive block partitioning strat-
egy that solves problem (2) separately over blocks of target vertices
{xB|B ∈ Bi}, where the subscript in xB denotes the column stack of
coordinates of vertices in B and the superscript in Bi denotes that
the block partitioning is recomputed for each iteration i. Similarly,
we denote by dv , xv and yv the search direction, target and source
coordinates of a single vertex v ∈ V, respectively.

Our partitioning scheme is designed to disconnect static
verticesV0 = {v ∈ V| dv = 0} from the rest of the mesh and to
group non-static (free) vertices V \ V0 into edge-connected blocks
with a sufficiently smooth descent field. More precisely, assume that
d(∇E, ∇2E ) is the descent direction and denote by u ∼ v that u and
v are neighbouring vertices such that both are in V0 or in V \ V0.
Then, we divide vertices in such a way that each block B is a con-
nected set with respect to edges {{u, v}| u ∼ v} and it satisfies:

∀u, v ∈ B : ‖du − dv‖2 ≤ K‖xu − xv‖2, (16)

where K is the adjustable threshold value that controls maximal
deviation in descent direction. Since ‘geometric information’ can-
not propagate through static vertices, a block surrounded by edges
{u, v}, u � v, can be updated independently of the rest of the mesh.
Motivated by this observation, we construct a connectivity graph
(V,E) in Algorithm 1 by iterating over vertices u ∼ v and measur-
ing the following quantity:

Luv = ‖dv − du‖2‖yv − yu‖2‖xv − xu‖−1
2 . (17)

The term ‖yv − yu‖ is chosen so that it normalizes distances in
the target domain. As specified in Algorithm 1, {u, v} is an edge
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Figure 7: Constrained parametrization of a space fitting curve. The source and target anchor positions are shown in the top-left corner. Free
vertices are initialized by Tutte embedding. ABCD(AKVF) results (left) are compared with other methods (right): stand-alone conformal LBD,
alternating combinations of LBD with AKVF and BCQN, and SA. All the methods, except LBD, optimize isometric distortions.

of E if u ∼ v and Luv ≤ K, and blocks Bi are connected compo-
nents of (V,E). Static blocks, obtained in Algorithm 1, include an-
chors and vertices that share only simplices with zero distortion
energy.

Our default approach to controlling vertex partitioning in Algo-
rithm 1 is to set K = ∞. In this case, blocks Bi are connected com-
ponents of the graph (V, {{u, v}| u ∼ v}). If B1, . . . ,BN are free
blocks, obtained in this partitioning scheme, then optimizing sep-
arately these blocks is more effective than using a global solver
because BCD methods update target coordinates in (5) with dif-
ferent step sizes �tB1 , . . . , �tBN . This statement is proved in Ap-
pendix A. Note that if there are no inversions, then setting K = ∞,
in most cases, results in a global optimization of unconstrained ver-
tices. Next, we discuss another strategy in which parameter K is
modified to control further partitioning of free vertices into smaller
blocks.

5.1. Local-global blending

In continuous settings, condition (16) is equivalent to requiring d to
be a K-Lipschitz (continuous) function of x in B. The block selec-
tion rule (16) is motivated by the well-known fact that optimization
of K-Lipschitz functions converges fast for small K. However, a fast
convergence of distortion energy in small blocks does not guarantee
the same for the total energy (1), since it may take time for ‘informa-
tion’ to propagate from one block to another. Therefore, parameter
K should be well tuned to obtain an optimal trade-off between the
number of blocks and the smoothness of d, obtained in each block.
A simple approach to control BCD is to alternate between number
of constant thresholds parameters. For instance, one can alternate
between global optimization and the finest partitioning, achieved
by setting K = 0. However, this strategy is often wasteful, since,
as illustrated by Figure 5, a significant part of the obtained itera-
tions can be ineffective or even counterproductive. Moreover, as ex-
plained in Section 4, using purely global approach often results in
slow progress at the beginning of the optimization, due to the pres-
ence of highly distorted elements.

We propose to estimate an optimal parameter K for vertex par-
titioning by means of the gradual blending between two oppo-
site strategies: (1) partitioning into connected components of ‘∼’,
obtained if K ≥ Lmax = max

u∼v
Luv; (2) fine partitioning into small

blocks, obtained for a low value of K, which we denote by Lmin.
We refer to the proposed approach as local-global blending (LGB).
Starting with K1 = Lmax and K2 = Lmin at the first and second it-
erations, we steadily update partitioning thresholds Ki for next it-
erations according to the observed progress towards achieving an
optimal number of coordinate blocks.

Assume thatP1 andP2 are estimates of the optimization progress
achieved at the first two iterations, respectively. Then, R1/2 =
P1/P2 is the rate by which the first iteration outperforms the sec-
ond one. Our blending procedure is designed to either increase or
decrease the initial coefficientsK1,K2 in such a way that their values
are changed in proportion toR1/2. The same process is repeated for
each successive pair of parameters (K2s−1, K2s), s ≥ 2. That is, we
compute K3 and K4 according to Algorithm 2 at the third iteration,
then we apply the algorithm again at the fifth iteration to compute
(K5, K6) as a function ofR3/4, K3 and K4. This process is repeated
until the blending termination criterion is reached (see Section 7.4).

It is difficult to predict how the non-linear optimization (2)
evolves by observing energy values or energy derivatives alone. In
fact, a slight modification of a single nearly collapsed simplex may
consume more energy than a complex deformation of the entire
shape. We therefore estimate optimization progress P i by observ-
ing both the decrease in the relative energy

�Ei = E(xi−1) − E(xi)
E(xi−1)

, (18)

and the magnitude of non-rigid motion by which target vertices are
moved.We refer to the latter quantity as displacement norm, defined
via Frobenius norm as follows:

Dispi = ∥∥xi − xi−1 − ProjKer(xi−1 )
(
xi − xi−1

)∥∥
Fro

, (19)

where Ker(xi−1) denotes the linear space of rigid transformations of
the target shape [CBSS17].
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Figure 8 depicts optimization progress and plots partitioning
thresholds, computed by Algorithm 2. Further details of the local-
global blending are presented in Appendix B.

Algorithm 2. Local-global blending (LGB)

678 blocks 3 blocks

11 blocks

75 blocks 14 blocks

1 block804 blocks

Optimizer iterationsFixer iterations

Fixer iterations Optimizer iterations

even

odd

even

odd

Figure 8: Normalized partitioning thresholds (K/Lmax) computed
by Algorithm 2 for distortions F (left) and D̃iso (right). Snapshots
are coloured according to vertex partitioning.

6. Cured Alternating Optimization

In this section, we address the problem of optimizing multiple dis-
tortionmeasures. Themain challenge in implementingABCD stems
from the fact that the algorithm copes with minimization of two po-
tentially competing measures—distortion measures in a fixer phase
(e.g. F) versus distortion measures in optimization phase (e.g. iso-
metric and conformal distortions)—reducing one might temporar-
ily increase the other measure. Denote by E1 and E2 distortion en-
ergies of these two measures, obtained according to (1). One has
to be cautious about how to combine E1 and E2 into a single opti-
mization scheme. Roughly speaking, there are three options to be
considered:

• processing measures in a cascade, i.e. optimizing the first energy
till convergence before moving to the next one;

• combining all measures into a single objective. For example, op-
timizing a sum of energies

Esingle(x) = α1E1(x) + α2E2(x) ; (20)

• processing measures in an alternatingmanner. That is, repeatedly
cycle through E1 and E2.

The cascade approach is not robust enough because, often, there
are inversions that cannot be repaired by fixer alone without deform-
ing valid simplices.

Often, minimizing a single objective (20) is not productive, since
vertex positions can be locked easily in the regions of vanishing or
inconsistent descent directions. Although alternating optimization
of different energies has no guaranties to avoid similar difficulties,
we found that the alternating scheme works best. Figures 7, 17 and
18 show that this option is much more robust than the others. In fact,
in all these trials, we have not encountered any instances in which
the optimization got stuck. Even for hard constrained problems with
randomized initializations, optimization proceeds until convergence
with no trouble. We posit that the reason for such a remarkable per-
formance of the algorithm is the combination of distortion enhance-
ments, introduced in Section 3, and our adaptive block partitioning
method. In particular, our modified distortionmeasures significantly
reduce any possible instabilities due to competing measures of the
different optimization phases. In addition, our partitioning strategy
avoids vertices being interlocked by allowing a separate processing
of valid and invalid simplices.

It is important to mention that our algorithm is based on inex-
act block coordinate minimization of each individual measure Ej.
That is, we optimize each block for a small number of successive
iterations and repeat this process before the algorithm proceeds to
the next measure in the queue. This is in contrast with the approach
in which Ej, in its turn, is minimized until convergence or up to the
point where the progress is lost. Advantages of the inexact approach
were observed in number of recent studies [TRG16, FLG15]. When
optimizer and map fixer distortions are alternatively optimized us-
ing the inexact approach, these measures support each other in a
straightforward manner.

When the minimization of (20) is getting stuck, some recent pa-
pers propose to try to smoothen the objective more and more, until
the optimization is able to resume again. This strategy may work
well in Autocuts algorithm [PTH*17], since it is flexible enough to
split problematic regions into disconnected sets. However, our tests
show that the single objective approach is much less effective in
seamless parametrization, and in parametrization with given cuts, as
well as in more general 2D and 3D applications, where neighbour-
ing simplices cannot be disassembled. The uniqueness of ABCD ap-
proach is in preserving target mesh topology during the entire opti-
mization. In fact, dividing the vertex set into blocks in our algorithm
can be considered as a ‘weak’ separation between simplices, which,
unlike the standard simplex disassembling, does not duplicate even
a single vertex.

7. ABCD Optimization Procedure

We are finally in position to present the full ABCD implementa-
tion, whose pseudo-code is given in Algorithm 3. This implemen-
tation integrates all the introduced strategies into four major steps,
illustrated schematically in Figure 3. In addition to these stages, our
procedure includes a number of sub-steps described below. Some
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Figure 9: Left: Comparing ABCD(PN) with LBD+PN and SA for a planar problem, initialized with flips. We used the following parameters
for LBD: finite unbounded condition number σ1/σ2 < ∞ and σ1/σ2 < 1016. Middle: Running SA with first six ABCD iterations to solve the
failure case of SA from Figure 17. Right: Using scaffold meshes to induce a globally injective map in ABCD(PN). Showing the two stages:
anchors are moved to initialize the problem (top), all inversions are repaired (bottom).

of these sub-steps are unique for our approach, whereas others are
well-known methods that we have adjusted to our needs.

7.1. Energy sequence specifications

To achieve its goal, the list of energies in ABCD should contain
both an invalid simplex penalty (15) and an optimizer distortion D̃,
defined according to (10). In our experiments, weminimize energies
F and D̃ and pick a small number of successive iterations nj for
eachmeasure to exploit best the alternating optimization.We always
begin with F to provide a better starting point for the optimizer.

Not that the exact mix of the energies can be very general and
there is also some flexibility in setting optimization parameters. We
explore a more general configurations for ABCD in Table S1 and
in Figure S24 in the Supporting Information. According to these
results, our algorithm behaves consistently across different settings.

7.2. Core-solver specifications

Each energy Ej, can, in principle, be minimized by a different solver
in Algorithm 3. Therefore, we can have S1 and S2 solvers, where
each solver should meet the following two criteria: (i) it optimizes
rotation invariant distortions; (ii) it is a line search based, i.e. it mod-
ifies vertex positions along the obtained descent direction. Although
very general solvers can be used, it is important to keep in mind two
things related to their usage:

• Often, at the beginning, iterations include one-ring vertex blocks
in which expensive core-solvers lose their efficiency. After exper-
imenting with various scenarios and estimating an average time
required for solving (7) in first- and second-order methods, we
suggest GD as a solver of choice for optimizing a single vertex
block. Note that, in general, small blocks disappear soon after all
elements attain positive orientation.

• We also recommend to use GD for minimizing F . A simple
GD actually works better for this measure than more advanced

solvers, both when optimizing over small and large blocks. The
reason for this is thatF is specifically designed to fit GD, whereas
state-of-the-art solvers, such as CM or SLIM, are designed to
minimize isometric and conformal distortions. Moreover, in GD,
vertices with vanishing gradients belong to static blocks, since
they have a zero descent direction. As a result, ABCD fixer with
GD updates only vertices that share invalid elements. Therefore,
if only a small fraction of simplices are flipped, then fixer itera-
tions run much faster with GD than with other solvers.

7.3. Enhanced line search filtering

The line search sub-step is aimed at modifying vertex coordinates
for the next iteration along the given block descent field, i.e. xi+1

B =
xiB + �tiBd

i
B . We use the Armijo backtracking search to estimate a

sufficiently good minimizer

�tiB =argmin
t∈[0,Tmax]

E(xiB + tdiB). (21)

We compute Tmax in (21) differently for map fixer measures and for
optimizer distortions, defined by (10). For optimizer distortions, we
employ the filtering of [SS15] over valid elements

Tmax = (1 − δ+)t+B , (22)

t+B = min
c∈C+ (B)

{∞, t > 0 | det (dfc[t]) = 0)} , (23)

where C+(B) denotes the set of positively oriented simplices that
share vertices in B, dfc[t] is the Jacobian of c, induced by mapping
vertices in B to xiB + tdiB, and δ+ > 0 is a small number that we
choose to avoid numerical errors on nearly collapsed elements.

Denote by C−(B) the set of inverted simplices adjacent to ver-
tices in B. Then, for map fixer distortions, such as F , the length of
the search interval is set to Tmax = (1 − δ−)t−B , where t

−
B is the min-

imum of the right side of (23), computed over C−(B), and δ− is a
negative number. Here, we use δ− < 0 instead of δ+ because often
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Figure 10: Characteristic gradient termination criteria [ZBK18] is compared against enhanced criteria (24). We test these criteria with
BCQN solver and Diso distortion for unconstrained swirl deformation (top) and for the same problem with fixed endpoints (bottom).

Figure 11: Testing ABCD on randomly generated deformations
that include 600 trials of constrained parametrization with ran-
domly placed anchors (top) and 600 trials of planar shape deforma-
tion with fixed boundary and randomized initialization of interiors
(bottom). We tested 100 problems with Eigen library for three res-
olution levels: 2K, 30K and 115K triangles for the elephant model;
6K, 24K, 100K for the octopus. Left: Average number of flips in
ABCD(PN) as a function of the runtime (vertical bars represent the
standard deviation). Right: The number of failures encountered in
a hundred trials of ABCD(BCQN) and ABCD(PN).

a minimizer of EF (xiB + tdiB) lies outside the interval [0, t−B ]. See
Figure 4 for an illustration of the line search step.

7.4. Termination criteria

Unlike global solvers with a single objective, ABCD has several
termination criteria—to stop processing of a current block, a cur-
rent measure and the entire optimization, and the special criteria for

terminating or resetting the LGB. A successful operation of ABCD
should encounter two phases: the first one of cleaning foldovers and
the final one of D̃ convergence. The first phase is completed when
F vanishes, and further processing is devoted solely to D̃. Thus, the
termination of an individual measure is claimed when its average
value reaches the optimum. The final convergence criteria are met
by either reaching the maximal iteration number (imax), or by arriv-
ing at sufficiently accurate solution. To recognize such solution, we
employ both the characteristic gradient (perimeter) norm [ZBK18]
and the average of the proposed displacement norm (19). That is,
we stop if the following two criteria are met:

∑
j

‖∇Ej‖ < ε1
∑
j

Char(Ej ) ,
Dispi(x)
�w(c)

< ε2, (24)

where Char(Ej ) denotes the characteristic gradient norm of Ej. Al-
though using Char(Ei) is more robust than a direct gradient toler-
ance, we found that characteristic norm can still lead to incorrect
termination claims if ε1 is too high, or to redundant iterations if the
threshold is too small. As exemplified by Figure 10, we can solve
failure cases of the perimeter norm criterion by adding the displace-
ment norm check, since it provides a simple, yet reliable, way for
ensuring the absence of any further progress.

We use (24) for terminating optimization in blocks, too. How-
ever, we bound block iterations by a small number bj, to follow
our paradigm of inexact optimization. To minimize redundant op-
erations in non-optimally selected blocks, we start with bj = 1 and
increment it at each cycle. Note that the impact of bj disappears
once block partitioning reaches a steady state. We stop updating pa-
rameters K by Algorithm 2 after the number of blocks in even iter-
ations becomes equal to that of odd iterations. However, we always
track the progress over last iterations and, if there is no decrease in
a distortion energy or in the number of invalid elements, then the
thresholds K are reset to their initial values.

7.5. Implementation

We have written the main body of Algorithm 3 in Matlab for
attaining a highly customizable interface that supports multiple
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#triangles #invalids �ixer total standard �ixer total standard

(a) 48964 22 0.99 6.87 8.09 0.87 9.22 11

(b) 91912 25 3.42 12.1 15.8 1.72 15 19.5

(c) 94736 9 4.46 10.9 17.9 1.68 9.52 17.8

91976 13 22.2 23.4 13.6 20.8 21.3 17.8

91976 1 0.38 5.82 12 0.43 8.36 15.8

91952 11 3.38 9.59 11.3 3.56 12.8 14.7

95880 3 1.63 6.83 12.6 1.37 9.02 15.5

5816 18 0.4 1.67 0.92 0.372 1.75 0.63

Timing with Pardiso (sec.) Timing with Eigen (sec.)

(a) (b) (c)

ABCD is faster 

ABCD is slower 

time ratio 

Figure 12: Using conformal flattening as a starting point for iso-
metric parametrization. We depict few samples from our experiment
in which BFF conformal maps contain flipped or collapsed trian-
gles. Top: BFF maps. Middle: Isometric parametrization, obtained
by ABCD(PN), initialized with BFF. Bottom: The table compares the
speed of our method (‘total’) with the speed of the standard isomet-
ric parametrization with PN solver, initialized by Tutte (‘standard’).
The histogram depicts runtime ratio of our method and the standard
one—when the ratio is less than 1, our method is faster.

core-solvers (GD, AKVF, BCQN, PN) and different variants of
ABCD. Critical parts of the code were implemented in C++. We
reimplemented AKVF and modified existing BCQN code to fully
integrate these core-solvers with ABCD. The parallel version of
our code supports PN solver and it is based on [CM83] graph
colouring algorithm. We have tested Eigen and Pardiso libraries
to solve (7) in ABCD(PN). We report runtimes for ABCD(PN) in
Figures 9, 14, 12, 15 and 16 and in Figures S26, S21 and S24 in the
Supporting Information.

8. Results

Since our algorithm unifies map fixers and core-solvers into a
single framework, we compare our results with methods from
both categories. To make a fair comparison, we examine different
core-solvers for ABCD (BCQN, PN, AKVF, GD) and alternating
combinations of state-of-the-art map fixers and core-solvers (e.g,
LBD+BCQN, LBD+AKVF, LBD+PN, SA). To compare itera-
tions of these methods with ABCD, we consider global solvers as
BCD applied on a single bock containing the entire vertex set. We
rearrange alternating iterations of global solvers into the hierarchi-
cal structure of Algorithm 3, and then count overall number of bj
loops (line 9 of Algorithm 3).

We test meshes with different numbers of elements and summa-
rize our results in Figures 5, 7, 11, 13 and 17 for 2D problems

Algorithm 3. Adaptive Block Coordinate Descent (ABCD)

and in Figures 1, 18 and 16 for volumetric problems. We anno-
tate our results as follows: ABCD(S) denotes that GD and S are
the fixer and optimizer solvers, respectively; S1 + S2 refers to the
alternating combination of S1 and S2 methods in which iterations
are divided between S1 and S2 in the same way as in our algorithm.
We use ARAP distortion D̃ARAP in Figure 16 and D̃iso distortion in
other ABCD trials, where Diso = σ 2

1 + σ−2
1 + · · · + σ 2

m + σ−2
m and

DARAP = (σ1 − 1)2 + · · · + (σm − 1)2.

Firstly, we compare LGB strategy with the block partitioning
scheme in which the partitioning threshold is constant, K = ∞. We
conclude that ABCD with LGB is more robust, but it has a higher
computation cost at the beginning of the optimization. The impact
on the algorithm speed is not significant on meshes with a few
dozens of thousands of simplices or less. However, in higher res-
olution, we recommend either to increase the value of Lmin or to use
ABCD without LGB.

Next, we compare ABCD with LBD + AKVF in Figure 5, to
show that our strategies support each other, and, when combined to-
gether, attain the most significant progress. These and other related
experiments with shape deformations and constrained parametriza-
tion indicate that ABCD is more likely to avoid poor local minima,
where positively oriented maps are non-locally injective (see Fig-
ure 5 top-right). Although we cannot guarantee avoiding cases of
poor local minima, our method is very general and it can be further
modified for inducing globally injective mapping. This subject is
briefly discussed in Appendix C and our experiment with scaffold
meshes is depicted in Figure 9 (right).

Methods from Figure 5 perform similarly over a wide range of
unconstrained and constrained problems in 2D and 3D. Further-
more, as shown in Figure 11, we have tested ABCD on 600 models
with randomly generated initializations and encountered only few
failures, while competing methods (LBD, SA) appear to fail con-
stantly on every trial. These tests show that ABCD is well scal-
able and can recover from extremely distorted meshes of a high
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Figure 13: We compare PN parametrization, initialized by Tutte embedding, and ABCD(PN) parametrization, initialized by mapping surfaces
into UV-map of a decimated mesh. Specifically, we parametrize a mesh with 2K triangles and use the deformation embedding method [NZ19]
for initializing the problem in a higher resolution (see Figure S25 in Supporting Information). We run 12 iterations for each mesh resolution
and depict D̃iso as a function of the runtime. In these examples, we used Eigen library for linear algebra.

Problem in 2D #triangles #invalid #vertices /

#anchors

Gecko 1238 5 804 / 45 0.04 0.121 3 7 0.17 0.25 13 22

Elephant 1796 412 1105 / 788 0.203 0.173 11 9 0.32 0.35 18 28

Octopus UV 5986 18 3924 / 8 0.469 0.313 13 9 0.91 0.89 20 27

Grid 100x100 20000 4149 10201/ 0 1.105 1.571 9 7 2.38 3.11 15 20

Octopus UV 23944 18 13833 / 8 2.022 4.757 15 49 2.58 5.82 17 57

Elephant 28736 14038 15193 / 1648 2.178 5.819 12 38 4.33 7.10 21 47

Octopus UV 95776 19 51609 / 8 9.414 13.779 20 45 14.82 17.80 27 55

Gorilla UV 100000 7 50379 / 0 0.463 0.473 3 3 2.89 3.10 6 8

Elephant 114944 54900 59121 / 3296 7.403 7.023 12 14 14.06 13.08 20 28

Gorilla UV 839092 20 420408/ 0 5.736 5.828 3 3 34.85 37.41 7 10

timing to �ix iterations

to �ix

timing total iterations

total

Problem in 3D #tets #invalid #vertices /

#anchors

timing to

�ix

iterations

to �ix

timing

total

iterations

total

Twisted bar 12000 6961 2541/0 1.65 8 3.18 14

Bar bending into spiral 30000 104 6171 / 0 0.9 6 3.36 10

Bar bending into spiral 30000 104 6171/ 2 0.91 6 4.41 12

Bar bending into spiral 30000 104 6171 / 242 1.03 7 9.52 21

Twisted wrench 50122 120 14798 /7942 2.16 9 5.52 13

Bended wrench 50122 322 14798 /4792 18.2 49 23.7 53

Bended wrench (ARAP) 50122 322 14798 / 4792 7.04 20 11.8 25

Armadillo 56917 405 15791/ 662 12.4 24 20.1 29

Armadillo (ARAP) 56917 405 15791/ 662 7.27 18 14.6 23

Dinosaur 58191 141 16115/680 22.4 58 28.4 60

(no LGB) (LGB) (LGB)(no LGB)

Figure 14: Reporting numbers of iterations and seconds until all invalid elements are fixed, and until the final convergence (24) of ABCD(PN)
with ε1 = 10−3 and ε2 = 10−2. In 2D, we report both the results of ABCD without LGB and of ABCD with LGB for Lmin = 0.1Lmax. We used
Pardiso linear solver to optimize D̃iso (default) and D̃ARAP distortions. All experiments were timed on the four-core i7-8565U CPU.

resolution. We compared ABCD(PN) for shape deformation prob-
lems with other related methods. As demonstrated in Figures 9
(left), 15 and 16, ABCD is both faster and more reliable than other
techniques for computing positively oriented simplicial maps. Also,
our experiments with different core-solvers show that ABCD(PN)
is more robust than ABCD(S) for any tested first order solver S.

We examine failure cases of LBD and SA fixers in both 2D (Fig-
ures 17 and 9) and 3D (Figures 18 and 16), and find that these meth-
ods can, in general, handle only maps with relatively small fractions
of inverted and collapsed simplices. These conclusions are exem-
plified for highly distorted initializations of the volumetric bar and
planar model in Figures 18 and 17. Moreover, as illustrated in Fig-
ure 1, adding positional constraints reduces significantly LBD ca-
pabilities. Note that our experiments reveal that running LBD and
state-of-the-art optimizers in the alternating manner is more effec-
tive than using stand-alone LBD or combining these methods into a
single cascade.

We tested our algorithm for computing isometric parametriza-
tions with fixed anchors and initial mappings to non-convex do-
mains. Some of these scenarios are presented in Figures 7 and 17.
To construct the starting point, we firstly compute the standard Tutte
embedding, and then move anchors to their prescribed positions.

We experiment with alternative initialization schemes for surface
parametrization. In Figures 13 and 17 (second row), we start with

Tutte mapping onto the non-convex region obtained by parameteriz-
ing a decimated mesh. That is, we initialize a problem by mapping
a rest surface into the image of its UV-map, computed in a lower
resolution (Section 12 in the Supporting Information). As demon-
strated by Figure 13, this initialization scheme can accelerate UV-
map computations for meshes of a high resolution.

In Figures 12 and S26 (Supporting Information), we compare the
BFF conformal initialization scheme with the standard isometric
parametrization. Specifically, we ran BFF conformal parametriza-
tion on 600 meshed from the dataset of [LYNF18] and collected
190 maps with invalid triangles. These maps were used to initial-
ize ABCD(PN). In this experiment, we have only one mesh where
ABCD(PN) failed to repair invalid elements in BFF, while Tutte em-
bedding produced flipped or collapsed triangles in 20% of the trials.
We tested the remaining meshes with valid Tutte maps and found
that in 84% of the trials, our method ran faster than the standard
parametrization, initialized by Tutte embedding.

As observed in our experiment, Tutte embedding has certain
implementation-related limitations and, for challenging meshes, it
can fail even if the target domain is convex. In particular, as demon-
strated in [SJZP19], Tutte embedding may produce invalid trian-
gles due to precision loss in the floating point arithmetic. We tested
ABCD(PN) and PE on a challenging Tutte failure example, intro-
duced in [SJZP19]. As demonstrated in Figure 15, ABCD ran faster
and converged to a mapping with lower isometric distortion.
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Figure 15: Mapping of theHele-Shaw polygon [SJZP19] (top) onto
the square (bottom) using ABCD(PN) (left) and the PE method
(right). The initial Tutte embedding produces 41 flipped and 845
degenerate triangles. It takes 25 s to fix all invalid triangles by
ABCD(PN), while PE runs 60 s. Histograms show final isometric
distortions of triangles in a logarithmic scale.

According to our proposition in Appendix A, we presume that
even for valid initializations, our vertex partitioning strategy can
improve a core-solver performance, provided that positional con-
straints disconnect the mesh. See an example of such scenario at the
bottom of Figure 6.

To summarize, we have demonstrated over a variety of geomet-
ric problems that ABCD exhibits superior performance compared
to existing methods in terms of its speed, robustness to inverted
and highly distorted simplices, and it can deal with more complex
positional constraints. In particular, our algorithm can start with
the proposed conformal initialization scheme to speed up isomet-
ric parametrization for challenging meshes.

9. Conclusion and Future Work

Until recently, a lack of locally-injective initialization was one of
the major concerns for running geometric optimization. Our algo-
rithm resolves this issue for awide range of scenarios. In this, ABCD
broadens the frontiers of tractable geometric processing problems
and we believe that it can contribute a lot to modern design tools.

We suggest to further explore conformal flattening and Tuttemap-
ping onto non-convex regions as an alternative starting point for
accelerating parametrizations. We believe that these methods can
be integrated with the recently proposed acceleration techniques
[LYNF18, PDZ*18] to attain even faster performance. Our algo-
rithm is built upon a number of heuristics that work well empiri-
cally. However, we cannot prove that there is a guaranty to repair all
invalid elements and reach the optimality. A supplementary math-
ematical analysis is required to better understand our empirical re-
sults and consider conditions for optimality.
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Figure 16: ABCD(PN) with D̃iso and D̃ARAP distortions versus LBD
on tetrahedral meshes. We bound condition number in LBD by
σ1/σ3 < 102. Left to right: Rest mesh, initialization with anchor
points, marked in blue, and numbers of flipped tets per second.

Although a naive GD map fixer works well in our experi-
ments, a more sophisticated approach can potentially yield even
better results. For example, gradient preconditioning of many first-
order solvers provides a better descent direction than a naive
GD because preconditioning methods take into account the in-
trinsic metric of the deformation space. Unfortunately, at the mo-
ment it is not clear what is the right pre-conditioner for map
fixer optimization steps. Considering a metric approach oriented
at minimizing this class of geometric measures and finding the
right preconditioner may be a promising direction for future
research.
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Appendix A: Proof of BCD Superiority

Proposition. Let S be a global core-solver, initialized by x0. De-
note by x and x̄ results of running a single iterations of S and of
ABCD(S) with K ≥ Lmax, respectively. If the exact line search is
used in (5) to minimize energy E, then E(x̄) ≤ E(x).
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Figure 17: ABCD with first-order core solvers versus other related methods in 2D. Each element in the table shows the final result of the
corresponding method and invalid triangle numbers per iteration. We plot Symmetric Dirichlet energy in logarithmic scale for each problem
(bottom), where solid curves and dashed lines denote optimizer and fixer iterations, respectively (LBD is considered as a fixer). Note that SA
results before the last iteration are our estimates, derived from the final output of SA.

Proof. Suppose w.l.o.g. that there are two free blocks B1 and
B2 in ABCD and denote the remaining static vertices by B0 =
V \ (B1 ∪ B2). Then, there are no mesh edges {u, v} for u ∈ B1 and
v ∈ B2 because, by our assumption on block partitioning, B1 is dis-
connected from B2 with respect to ‘∼’ relation. As a result, we can
represent E as a sum of energies, defined over disjoint simplices:

E = EB0 + EB1 + EB2 ; EBi =
∑

c∈C(Bi )
w(c)D(dfc),

where C(Bi), i = 1, 2, are simplices that share at least one vertex
from Bi and C(B0) are the rest of the elements. Denote by d and
d̄ the descent directions attained in S and ABCD(S), respectively.
Define E[z] = E(x0 + z), then the resulting energy in ABCD(S) is

E(x̄) = min
�t1

EB1
[
�t1d̄B1

] + min
�t2

EB2
[
�t2d̄B2

] + EB0︸︷︷︸
const.

, (A.1)

while running a single iteration of S yields

E(x) = min
�t

(
EB1

[
�tdB1

] + EB2
[
�tdB2

] + EB0
)
. (A.2)

If d̄Bi = dBi for i = 1, 2, then the proposition’s inequality
(A.1)≤(A.2) is proven because ‘min’ is sub-additive and EB0
is constant by the definition (only free vertices are updated in S and
ABCD(S)).

Note thatH in (7) satisfies the following: (i)Huv �= 0 only if u and
v share a common simplex c; (ii) Huv depends only on xp, where
p are neighbours of c’s vertices; (iii) Huv = 0 for any u ∈ B1 and
v ∈ B2, since there are no edges between B1 and B2. Properties (i)–
(iii) imply that, by reordering vertices, (7) can be rewritten as⎛⎝HB0 ∗ ∗

∗ HB1 0
∗ 0 HB2

⎞⎠ ⎛⎝ 0
dB1
dB2

⎞⎠ = −
⎛⎝∇EB0

∇EB1
∇EB2

⎞⎠ , (A.3)

where each HBi is a block of H, computed for vertices in Bi. Then,
we conclude by (A.3) that d̄Bi = dBi for i = 1, 2. For N free blocks,
B1, . . . ,BN , we repeat the proof with B0 = V \ (B1 ∪ B2 . . . ∪ BN )
and show that d̄Bi = dBi for i ≥ 1. �

Appendix B: Blending Procedure

Denote odd (global) and even (local) iterations by g(i) = 2i− 1
and l(i) = 2i for i ≥ 1, respectively. We estimates the performance
ratios of k global-local iterations by

Ri = 1

min{k, i}(1 + μ)

i∑
s=�i−k+1�

�Eg(s)

�El(s)
+ μ

Dispg(s)

Displ(s)
, (B.1)

where � • � = max{•, 1}, μ > 0 is a constant blending parame-
ter and the denominator value is chosen for obtaining Ri = 1 for
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Figure 18: ABCD versus alternating combination of LBD and BCQN on tet meshes. We show number of invalid tets and energy values per
iteration. We plot energy Ej in solid lines for iterations in which Ej is minimized and in other iterations Ej is shown in dashed lines.

equally performed global-local iterations. We compute (B.1) and
adjust partitioning thresholds for the next cycle via

(
K2i+1, K2i+2

) = Blend
(
K2i−1, K2i, Ri, Lmax

)
, (B.2)

where ‘Blend’ is the procedure described in Algorithm 2.

Appendix C: Map Injectivity

Although orientation-preserving maps are not always one-to-one,
there is the following simple condition for guaranteeing the global
bijectivity [AL13]: a positively oriented simplicial map f : M → �

is a global bijection if f maps bijectively ∂M onto ∂�. As a result,
ABCD produces a globally injective map upon its successful run
if the optimized boundary is non-self-intersecting. We have exper-
imented with techniques [JSP17, SS15] to avoid self-intersections
between boundary edges. These methods meet the necessary con-
ditions, listed in Section 7.2, and thus can be integrated with
ABCD.

In a toy model example, demonstrated in Figure 9 (right), we
attain a globally injective map by constructing a scaffold mesh
[JSP17] and by running Algorithm 3 with the line search step mod-
ified to prevent boundary self-intersections [NSZ18].
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porting Information section at the end of the article.

Figure S19: Running a stress test of ABCD(PN) to identify posi-
tional constraints inconsistent with a positively oriented UV-map.

Figure S20: Here we solve the third problem from Figure 18 by
minimizing three distortions.

Table S1: ABCD parameters are specified for each trial, tested in
Figure S24.

Algorithm 4: ABCD with LGB for q measures.

Figure S21: Unconstrained parametrization of Hilbert curve of dif-
ferent resolutions.

Figure S22: Comparing ABCD(BCQN), ABCD(AKVF) and
LBD+BCQN from Figure 18.

Figure S23: Showing an average number of invalid triangles per
iteration, obtained in the experiments from Figure 11.

Figure S24: Testing the impact of setting different hyper-
parameters in ABCD(PN) algorithm.

Figure S25: Illustration of the deformation embedding method, de-
scried in Section 12.

Figure S26: All the results of the conformal initialization experi-
ment (some were depicted by Figure 12).

Video S1
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