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Abstract— As a crucial step of sensor data fusion, sensor
calibration plays a vital role in many cutting-edge machine
vision applications, such as autonomous vehicles and AR/VR.
Existing techniques either require quite amount of manual
work and complex settings, or are unrobust and prone to
produce suboptimal results. In this paper, we investigate the
extrinsic calibration of an RGB camera and a light detection
and ranging (LiDAR) sensor, which are two of the most widely
used sensors in autonomous vehicles for perceiving the outdoor
environment. Specifically, we introduce an online calibration
technique that automatically computes the optimal rigid motion
transformation between the aforementioned two sensors and
maximizes their mutual information of perceived data, without
the need of tuning environment settings. By formulating the
calibration as an optimization problem with a novel calibration
quality metric based on semantic features, we successfully
and robustly align pairs of temporally synchronized camera
and LiDAR frames in real time. Demonstrated on several
autonomous driving tasks, our method outperforms state-of-
the-art edge feature based auto-calibration approaches in terms
of robustness and accuracy.

I. INTRODUCTION

Autonomous driving has attracted an increasing amount
of attention from both academia and industrial partners in
recent years. A safe and robust navigation system heavily
relies on accurate perception of visual objects in the environ-
ment. Unfortunately, none of the existing sensors is able to
guarantee the perceptual reliability in all cases. To overcome
such hardware limitations, recent autonomous robot systems
utilize multiple sensor modalities, which provide comple-
mentary environmental information, and adopt sensor fusion
techniques to reduce data uncertainty. An essential step to
fuse information from heterogeneous devices is to accurately
estimate their relative rigid body transformations through
extrinsic calibration. In this paper, we focus on calibration
between a camera and a LiDAR, which is one of the most ef-
fective complementary pairs of sensors for robotic perception
and is pervasive in modern autonomous vehicles. Unlike cali-
bration between two sensors of the same modality, calibrating
multi-modal sensor data is more difficult because we must
identify correspondences among completely different sensor
data, such as point cloud and image frames. Tedious manual
work and special assumptions, such as artificial markers, are
often required to overcome such difficulty. This procedure
is laborious and time consuming especially for autonomous
vehicles, because their sensor position slightly drifts over the
time and needs periodic recalibration.

Recent approaches for extrinsic calibration between cam-
era and LiDAR have focused on automatic and targetless
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Fig. 1. Our sensors setup is composed of multiple RGB camera and LiDAR
devices mounted to the roof of autonomous vehicle. In this work, we focus
on calibration problem of single camera-LiDAR pair and our algorithm can
be directly generalized to multiple pairs setting.

methods to reduce the setup cost or complexity and enable
online recalibration. While significant effort has been devoted
to aligning edge features in different sensors data, we show
that aligning semantic features instead can be more effective
and robust. In this work, we present an online calibration
method tailored to automotive sensor setups as shown in
Figure 1. The performance and quality of our approach
is demonstrated on real-time automotive sensor calibration
tasks, where we have observed significant improvements in
accuracy and robustness over existing approaches.

II. RELATED WORK

Recent years have witnessed the application of camera-
LiDAR based sensor fusion to a growing repertoire of
autonomous vehicles. To enable reliable robotic perception,
there has been a number of proposed solutions to this multi-
sensor calibration problem over the past few years. Each
sensor can be characterized by its intrinsic parameters, such
as camera lens distortion, and extrinsic parameters. In this
work, we only focus on extrinsic calibration and assume
their intrinsic parameters have been accurately estimated.
Extrinsic calibration is the process of estimating the rigid
body transformation between two or more sensors. With a
proper calibration between a camera and a LiDAR, laser
measurements of the LiDAR can be associated with color
pixels by being projected onto the camera frame. Conversely,
pixels in the camera frame can be given depth values by
querying the nearest laser returns. In general, most cali-
bration approaches, including our proposed approach, are
fundamentally based on identifying and matching features
detected in LiDAR frames and camera frames to determine
the calibration parameters. Traditional calibration techniques
are realized by placing fixed markers or targets, e.g., a
checkerboard, in the scenes, but these approaches suffer from
complicated setup requirement and are limited to offline
usages. To overcome this limitation, more recent work ex-
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plores automatic calibration using features presented in the
observed scene, without any preset targets.

A. Target Based Approach

The extrinsic calibration of a color camera and a laser
rangefinder was first addressed by Zhang and Pless [1], who
used a fixed checkerboard as the calibration target. They
solved for the calibration parameters by forming a non-linear
optimization problem through normals of the checkerboard
surface. This method was then generalized by Unnikrishnan
and Hebert [2] who manually selected point features from
both sensors data and modeled the calibration task as a linear
least-squares problem. Shortly after, Scaramuzza et al. [3]
proposed to find the optimal calibration estimation through
perspective-from-n-points (PnP) algorithm given manually
established point feature correspondences. Nunnez et al. [4]
later modified Zhang’s method to calibrate the two sensors
by detecting a checkerboard pattern. Other calibration targets
have also been explored to fulfill this task, including right-
angled triangular checkerboard [5], trirectangular trihedron
[6], ordinary box [7], custom-made planar target [8], [9], v-
shaped calibration target [10] or an arbitrary trihedron [11],
etc. Kassir and Peynot [12] eliminated the effort of man-
ual work during calibration by providing a reliable corner
detection procedure based on Bouguet’s camera calibration
Matlab toolbox. Bok et al. [13] used bridging sensor for
calibration without overlap between camera and LiDARs’
field of view. Geiger [14] presented a calibration toolbox
with web interface for multiple cameras and a multi-beam
laser using a single shot of multiple checkerboard patterns
placed across a room.

B. Targetless Approach

Many attempts have been made in recent years to develop
an automatic and flexible camera-LiDAR calibration system
without any preset targets. Some interesting and seminal
work in this area were published in 2012 by two groups
of researchers [15], [16], who proposed to estimate extrinsic
calibration parameters by maximizing the mutual information
between the reflectivity of point clouds and the intensity
of images. This idea was first applied to registration prob-
lems given the assumption that data acquired by multiple
sensors on the same object should have correlation [17],
[18]. For example, reflectivity of LiDAR measurements
(the intensity of laser return) tends to be higher on white
objects and vegetation, and lower on dark-colored objects.
This implies considerable correlation between reflectivity
in LiDAR frames and color in camera frames. However,
Pandey’s method [16] is easily stuck in local optima due
to the non-smoothness of objective function. This problem
is later addressed by Irie et al. [19] who developed a bagged
least-squares mutual information method that enables them
to incorporate more features to construct a considerably
smoother objective function than previous ones.

Another early attempt was made by Bileschi [20] who
proposed to align LiDAR frames to camera images by
contour matching. The edge points in each laser scan are

identified and projected onto the camera frame. The ex-
trinsic parameters are then adjusted accordingly to improve
the alignment of projected edge points to object contours
detected in camera frames. A similar idea was proposed
and verified later in Levinson and Thrun’s work [21]. An
objective function is defined to capture the correlation of
discontinuities in point clouds and edges in camera frames.
An inverse distance transform (IDT) is applied on the edge
camera frame to produce a smoother energy map. While they
employed only the strength of the edges, Taylor et al. [22]
reported the usefulness of the orientation of edges. They
proposed using gradient orientation measurement that can
evaluate the degree to which edge orientations are aligned
between a camera frame and LiDAR reflectivity image. To
overcome the difficulty of making direct edge alignment
between data acquired by different sensors with significantly
different sampling pattern, Castorena et al. [23] jointly fused
the data and estimated the calibration parameters. In this
work, we propose to align semantic features instead of edge
features to improve online calibration robustness, especially
for low-resolution LiDAR and noisy inputs.

C. Semantic Image Segmentation

Semantic image segmentation is a well established re-
search area and has been evolved successfully for decades.
As we utilize segmentation techniques in our method, here
we will briefly introduce most related previous work. For
interested readers on this topic, we refer you to some recent
survey [24] for a more comprehensive overview. Semantic
image segmentation predicts dense labels for each pixel in
the image, and is regarded as a very important task that
can help deep understanding of scenes, objects, and humans.
Traditional methods [25] adopt handcrafted features, while
recent convolutional neural networks (CNN) based meth-
ods largely improve the performance and make remarkable
progress [26]–[28]. In this work, we adopt Pyramid Scene
Parsing Network (PSPNet) [27] to semantically segment
each camera frame and use it to construct an optimization
objective for optimal calibration parameters estimation.

III. CALIBRATION QUALITY METRIC

The LiDAR device produces point clouds which are dis-
tance measurements defined in the local coordinate system
around the LiDAR. To fuse information from two different
device sources, correlation between sensors data has to be
established through mappings from one device to the other.
For example, a 3D laser point can be represented as a 3×1
vector, pL ∈ R3, within the LiDAR coordinate system,
which can be transformed to the camera coordinate system
as pC via rigid motion,

pC = RpL + t. (1)

where R ∈ R3×3 and t ∈ R3 are the relative rotation and
translation between two device coordinate system, which
are to be figured out in extrinsic calibration. Similar to
most previous work, we adopt the pinhole camera model
and project the camera coordinates pC to image coordinates
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Fig. 2. Edge detection is more sensitive to color variations and noise
in camera image than semantic segmentation. In left column, we show the
edge detection and semantic segmentations for cars in a camera frame. Edge
detection results in more redundant and inconsistent features, e.g., on the
boundary of shadow on the ground, car windows, caused by local changes in
color. In right column, we add random noise to the input image, which has
a significant impact on the edge detection output. Semantic segmentation
provides consistent results across two different noise levels.

pI ∈ R2. In reality, there is often a considerable amount of
radial and tangential lens distortion in camera frames, which
makes this projection a nonlinear mapping K : R3 → R2,

pI = K(pC). (2)

In this work, we focus on solving extrinsic calibration
parameters, R and t, assuming that K(·) has already been
determined in intrinsic calibration.

We propose a quality metric for extrinsic calibration,
which has higher value for more accurate calibration pa-
rameters. With this metric, the process of solving extrinsic
parameters can be modeled as a non-linear iterative optimiza-
tion process. One of the popular quality metrics explored and
adopted by existing online calibration approaches is based
on aligning edge features [21]. These approaches find the
optimal parameters by seeking for the best alignment of edge
features between point clouds and camera images, which is
demonstrated to work well for automatic extrinsic calibration
but lack robustness especially when the parameters’ initial
value is far from optimal. One important cause for this
problem is that such metrics highly rely on pixel intensity
in camera frames. For example, variations of objects’ color
in the camera frame may have significant impact on the
edge detection results, as shown in Figure 2. Moreover,
edge features are usually sensitive to sensor data quality.
Noisy or sparse information may easily lead to problematic
edge detection results, as shown in Figure 3. In order to
avoid the aforementioned problems and improve calibration
robustness, we propose a novel quality metric based on
semantic features detected in sensor data and develop an
iterative nonlinear subgradient solver to efficiently estimate
the optimal results.

Fig. 3. Edge feature (right) in LiDAR point cloud is vulnerable to noise
interference (notice the detected edge feature in red on the ground plane),
especially for low resolution laser data as shown in left figure. In such case,
the detected edge feature is too sparse to identify outliers (false positive)
when being aligned with camera image.

In our algorithm, the semantic features of interest are
obstacles that can reflect laser beams, e.g., cars, trees, pedes-
trians, and traffic signs. In recent years, huge progress has
been made in the field of image semantic segmentation since
the successful application of CNN to image detection tasks
[29]. We adopt PSPNet [27] to semantically segment camera
frames and consider the segmentation result as a reward mask
to guide where the laser points reported by LiDAR device
are most likely to fall on when projected onto the camera
frame. Unlike edge feature based methods that rely on color
information in camera frames, semantic segmentation is more
robust to variations of lighting conditions and noise, as
demonstrated in Figure 2. In this paper, we use cars as
our major features to demonstrate the robustness of our
calibration method, as they commonly appear as obstacles in
road tests for autonomous vehicles. Other types of semantic
features can fit into our proposed framework as long as they
are supported by the adopted segmentation algorithms.

With the pixel-wise obstacle/background segmentation
produced by PSPNet, we construct a height map H : R2 →
R,

h = H(pI), (3)

To encourage laser points to fall on the pixels labeled as
obstacles, we define our quality metric by measuring the
overlap between the height map and the laser points projected
onto the camera frame. For LiDAR point cloud data P ⊂ R3,
we simply remove ground points G ⊂ R3, as they don’t
necessarily contribute to the calibration optimization process.
Instead of extracting edge features from point cloud based
on depth discontinuities [21], we use the point cloud itself.
Each point, pL ∈ P \ G, will contribute height value of the
pixel it falls on to the final quality metric,

φ(R, t) =
∑

pL∈P\G

H ◦ K(RpL + t). (4)

Such strategy is more robust when working with relatively
low resolution LiDAR device and noise interference as
illustrated in Figure 3. Ideally, when the extrinsic calibration
is exact, we should expect the objective φ to be maximized as
pointed out by the work of mutual information maximization
[15], [16] that reflected laser points are more likely to fall on
obstacle pixels when projected into the camera image space.

As shown in Figure 4b, the most simple height map is a
binary segmentation mask, in which obstacle pixels O ⊂ R2
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(a) (b) (c) (d)

Fig. 4. To avoid influence over quality metric from color variation and noise perturbation, we construct a height map H from input camera image (a).
First, we extract the semantic information from RGB image data and set every pixel’s value in the segmented region to 1 and others to 0 (b). Then we apply
distance transform to decay segmented region from boundary to its interior (c). Finally, we compute inverse distance transformation of the background
region to construct a smooth height map (d).

and background pixels B ⊂ R2 are set to one and zero,
respectively.

hSS = HSS(pI) =

{
0, pI ∈ B
1, pI ∈ O

. (5)

However, this binary map HSS(·) has a null space along
the camera viewing axis as shown in Figure 5. Namely, any
perturbation along that direction will produce local optimal
solutions. To enforce uniqueness of local optimality, we
decay each segmentation mask from its boundary gradually
to its interior as shown in Figure 4c, which stops the extrinsic
parameters from perturbing along the viewing axis freely.
The interior decaying operation is achieved by distance
transformation,

hDT = HDT (pI) = α1HSS(pI)

+(1− α1) max
qI∈B

HSS(qI)γ
‖pI−qI‖1
1 ,pI ∈ O, (6)

where α1 and γ1 are set as 0.93 and 0.59 respectively. When
LiDAR points fall on background region, they will suffer
from the vanishing gradient problem [30] and no longer
contribute to improve the calibration quality. Thus we follow
a similar objective function smoothing strategy described by
Levinson and Thrun [21] using inverse distance transform,

hIDT = HIDT (pI) = α0HSS(pI)

+(1− α0) max
qI∈O

HSS(qI)γ
‖pI−qI‖1
0 ,pI ∈ B, (7)

in order to make the quality metric more friendly to opti-
mization solvers (see Figure 4d). Such smoothed height map
will be easier to handle and also share the same optimal

Fig. 5. Binary map has null space problem as the quality metric will be
indistinguishable when same amount of LiDAR points fall on the segmented
region. The above three configurations differ with each other along the
viewing direction, but they have the same calibration quality using binary
map. Thus it’s impossible to judge which one is the best (left in this case).

calibration solution as the non-smoothed one. Finally, the
height map in Equation 3 is defined as

h = H(pI) =

{
hIDT , pI ∈ B
hDT , pI ∈ O

. (8)

IV. CALIBRATION OPTIMIZATION

The objective function introduced in the previous section
provides one way to measure the quality of current extrinsic
calibration. An accurate calibration configuration should be
a stationary point and achieve local optimality of this cali-
bration objective,

R∗, t∗ = argmax
R,t

φ(R, t). (9)

Any perturbation of this configuration would lead to decre-
ment of the quality metric. To automatically calibrate be-
tween camera and LiDAR, we propose a nonlinear and non-
smooth optimization solver to efficiently improve the calibra-
tion quality starting from a reasonable initial configuration
R0 and t0. As 3D rotation matrix R lies in the Lie group
SO(3), it needs to satisfy the constraints,

RTR = I, det(R) = 1 (10)

where I is the 3×3 identity matrix and det(·) is matrix
determinant. However, directly optimizing over R would
be too cumbersome as it not only has too many redundant
degrees of freedom (9 for matrix of R3×3) but also introduce
non-trivial equality constraints to our optimization problem.
Instead we reparameterize the rotation matrix as a rotation
vector so that we can get rid of equality constraints and
only work on a relatively easy unconstrained optimization
problem. A rotation vector r is simply a vector in R3, whose
unit direction r

‖r‖ is the rotation axis and length ‖r‖ is the
rotation speed around the axis. As rotation vector space is
isomorphic to the Lie algebra so(3) of 3D rotation group,
conversion between R and r can be defined by corresponding
exponential and logarithm map. We adopt the Rodrigues
formula, R = exp(r), to rephrase our optimization problem
in terms of r and t,

Φ(r, t) = φ(exp(r), t). (11)

In order to solve for these six degrees of freedom, we propose
a new non-monotonic subgradient ascent algorithm as shown
in Algorithm 1.
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Algorithm 1: Extrinsic Calibration Optimization Solver
Input: r0, t0, H, K, P \G, ω, τ , δ
Output: r∗, t∗
E0 = {Φ0}, β = 0.5
for n = 0 to τ
En = En \ {Φn−ω}
η = 1.0, ∆rn ∈ ∂rnΦ, ∆tn ∈ ∂tnΦ
iter = 0, back tracking = true
while back tracking and iter < δ do

if Φ(rn + η∆rn, tn + η∆tn) > minEn

rn+1 = rn + η∆rn
tn+1 = tn + η∆tn
back tracking = false

else
η = β · η

end if
iter = iter + 1

end while
En+1 = En ∪ {Φn+1}
if minE == maxE

break
end if

end for
r∗ ≈ rn, t∗ ≈ tn

The inputs to our solver are camera frames and LiDAR
frames as well as initial value for calibration parameters,
r0 and t0. After processing sensors data as discussed in
the previous section, we start an iterative procedure to
gradually improve the calibration parameters. Unlikely con-
vex unconstrained optimization problem, in which objective
gradient plays a crucial role to update solution iteratively,
our objective function is neither convex nor differentiable
because height map is sampled discretely. Thus we have to
adopt the subdifferential strategy by picking one direction
within the subdifferential cone ∂Φ. We choose coordinate
ascent direction to update r and t during each iteration.
Then the step size η is determined through backtracking line
search in order to stabilize the optimization process. Due to
lack of objective differential information, we only compare
objective value during line search. An immediate idea would
be picking the step size whenever the objective value is larger
than the current one as we backtrack along the chosen search
direction. Such approach will enforce the solver to converge
as the objective value is guaranteed to increase monotoni-
cally. However, we observed that such monotonic line search
strategy may sometimes lead us to suboptimal solution. This
is due to the non-differentiable and non-convex properties of
our objective function. To alleviate such problem, we choose
non-monotonic line search [31] by comparing the objective
along search direction against the minimum objective value
among a sequence of past iterations, En, instead of just the
current, Φn. Such modification will guarantee our solver to
converge but also provide it the ability to recover from being
stuck by the suboptimal solution. The cardinality of set En

is decided by user provided parameter ω.

V. EXPERIMENTS

A. Implementation

All evaluations and experiments are performed on an Intel
Xeon Gold 6148 CPU and a NVIDIA TITAN V GPU with
our C++ and CUDA implementation. Our testing data comes
from recordings of real world self-driving road tests. The
input sensor data are a 960×510 downsampled RGB camera
image and 32-beam LiDAR point cloud. Time cost of our
algorithm is dominated by semantic feature extraction from
camera images. The semantic segmentation model we adopt,
PSPNet [27], was a large CNN model tuned for accuracy
rather than efficiency. To achieve the goal of real-time online
calibration, we use NVIDIA high performance inference
engine, TensorRT [32]. In order to gain the most speedup
without sacrificing noticeable accuracy, we customize some
of the PSPNet layers on TensorRT. For instance, we replace
one of the most computational expensive layers in the
model, resize-bilinear, with our own CUDA implementation
to enable multi-channel linear resize operation in FP16
precision. We experimented with two different precisions,
FP32 and FP16, for PSPNet inference. When using the
FP16 precision, our final PSPNet model takes only 167.744
milliseconds per camera image frame. On Pascal VOC 2012
[33], the segmentation precision of our modified PSPNet
implementation for cars is 0.8016 and 0.8012 when using
FP32 and FP16 precisions, respectively. This demonstrates
that while FP16 bring considerable performance gain, it does
not cause noticeable degradation on segmentation precision
nor calibration accuracy. To achieve converged solution as
reported in the paper, we set τ to 500 and δ to 100. In Table I,
we list and compare our pipeline’s performance statistics on
CPU and GPU.

Levinson and Thrun [21] suggested that multiple frames
can be used for calibration optimization. We compare using
1, 5, and 10 frames. We synthetically apply the same per-
turbation to precalibrated extrinsic parameters (using offline
method) of 10 examples as initial solutions, and measure the
quality of converged solutions by the residual with respect
to the precalibrated parameter configuration in terms of
conventional L2 norm for R6, which provides concise upper
bound for both translational and rotational geometric terms.
As shown in Table II, we observe more frames generally need
more iterations to converge, but it does not bring noticeable
quality improvement. Similarly, we also compare the results
of choosing different non-monotonic line search window size
ω. As shown in the table, more iterations are needed in

CPU GPU(FP32) GPU(FP16)
Image Segmentation 3.419 s 232.708 ms 167.744 ms

Image Processing 2.669 s 24.42 ms 6.986ms
Optimization 86.573 ms N/A N/A

TABLE I
PERFORMANCE OF THE METHOD WHEN DEPLOYED ON DIFFERENT

COMPUTATIONAL PLATFORMS.
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Frame Size ω = 2 ω = 5 ω = 10
1 37/20 72/22 77/17

Iteration 5 72/33 85/27 81/18
10 88/24 83/24 80/17
1 0.96/1.45 1.17/0.99 1.02/0.80

Residual 5 0.96/0.91 0.85/0.53 0.95/0.70
10 0.98/0.95 1.06/0.84 0.95/0.64

TABLE II
CONVERGENCE AND QUALITY PERFORMANCE (MEAN/STANDARD

DEVIATION) OF OUR OPTIMIZATION SOLVER WHEN CHOOSING

DIFFERENT SENSOR DATA FRAME WINDOW SIZE (1, 5, 10) AND

DIFFERENT NON-MONOTONIC LINE SEARCH WINDOW SIZE (ω = 2, 5,
10). LARGER WINDOW SIZE GENERALLY IMPLIES SLOWER

CONVERGENCE.

general to converge to local optimal solution when larger ω
is chosen. Therefore, we adopt single frame calibration and
set ω to 5 for real time application purpose. Multiple frames
and larger ω may be more reasonable when robustness is a
major concern.

B. Edge Feature vs. Semantic Feature

In this section, we compare our semantic feature based
approach with previous edge feature based approach and
demonstrate its performance through practical examples. To
evaluate the impact of different approaches, we apply the
same optimization solver as described in section IV to both of
them for fair comparison. Similar to the previous experiment,
we synthetically perturb precalibrated extrinsic parameters,
and apply both approaches to see if they can recover the
original correct solution. Compare the residual between the
precalibrated parameter configuration and converged solu-
tions, and plot the progress of both approaches in the same
figure as shown in Figure 6. The edge based approach has
more non-trivial local optima and the solver easily gets
stuck and stopped making any progress. On the other hand,
semantic based approach is more solver friendly and is able
to recover original extrinsic parameter configuration in this
case.

Next we compare two approaches on 10 more examples
with various degree of perturbation. We randomly perturb
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Fig. 6. Convergence performance of our optimization method when applied
to edge feature based metric and semantic feature based metric. The edge-
feature approach has many local optima that can make optimization solvers
easily stuck, while semantic-feature approach is more friendly to solvers.
The edge-feature approach converges faster according to our stopping
criteria but produces suboptimal solutions.

Perturbation Edge Feature Semantic Feature
0-1 3.777e-3/1.927e-3 8.869e-3/7.365e-3
1-5 3.429/3.660 1.219e-1/2.701e-1
5-15 11.495/7.263 9.058e-1/8.944e-1

15-30 23.025/9.766 2.502/2.746
30-60 52.179/14.836 10.604/8.865

TABLE III
RESIDUAL STATISTICS (MEAN/STANDARD DEVIATION) OF THE

CONVERGED SOLUTION WHEN USING THE EDGE FEATURE-BASED

METRIC AND THE SEMANTIC-FEATURE BASED METRIC FOR

CALIBRATION TASKS WITH INCREASING DIFFICULTY.

each example’s precalibrated extrinsic configuration with
residual ranging from [0, 1], [1, 5], [5, 15], [15, 30] and
[30, 60]. As the initial solution of optimization solver gets
farther and farther away from the expected solution, the
difficulty of the calibration task increases. We demonstrate
how both approaches behave in this situation. As shown in
Table III, we compare the mean and standard deviation of
both methods’ output residual with respect to the precali-
brated one. As shown in the table, when the perturbation
is small, both approaches are able to recover the extrinsic
parameters quite accurately. As the miscalibration gets more
severe, the edge feature based approach quickly starts to
produce poor calibration results. On the other hand, the
semantic feature based approach has a much more robust
and stable performance.

Similar to many other algorithms, we require obstacles
with different range of distance to our autonomous vehicle
in order to obtain accurate results. Small errors will be
amplified when fused data has large depth value or lens
distortion is no longer ignorable. By taking more obstacle
types into account, we are expecting to improve our results
further, as obstacles with larger spectrum of distance to our
vehicle will contribute to the online calibration process.

VI. CONCLUSIONS
We demonstrate the use of camera’s semantic features

and LiDAR point clouds to construct a solver friendly
extrinsic calibration quality metric. Such measurement can
be used to automatically determine if the current extrinsic
configuration is accurate or not, which is an essential step
for self driving vehicles to detect and report calibration errors
during operation. We expect future exploration on combining
LiDAR semantic information to further improve our method.
By combining non-monotonic line search and subgradient
ascent, we are able to estimate the optimal calibration
parameters robustly and efficiently. Our experiments with
real world self driving tasks show promising performance
improvement compared to existing algorithms and the ability
to robustly recover from miscalibrated configurations. More-
over, it can also be combined with better frame selection
approaches, such as RANSAC and other heuristic methods.
Finally, poor segmentation quality or coarse LiDAR scan will
degrade the calibration accuracy, but our method can still be
used to provide good initial estimation for offline calibration
approaches.
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