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Figure 1. The Digital Twin Catalog (DTC) dataset comprises 2,000 digital twins of physical-world objects (a), characterized by millimeter-
level geometric accuracy and photorealistic PBR materials (b). DTC includes evaluation data captured using both DSLR cameras and
egocentric Aria glasses, featuring captured images with precise foreground object masks and environment lighting for relighting evaluation.

Abstract

We introduce Digital Twin Catalog (DTC), a new large-scale
photorealistic 3D object digital twin dataset. A digital twin
of a 3D object is a highly detailed, virtually indistinguishable
representation of a physical object, accurately capturing its
shape, appearance, physical properties, and other attributes.
Recent advances in neural-based 3D reconstruction and in-
verse rendering have significantly improved the quality of
3D object reconstruction. Despite these advancements, there
remains a lack of a large-scale, digital twin quality real-
world dataset and benchmark that can quantitatively assess
and compare the performance of different reconstruction
methods, as well as improve reconstruction quality through

∗Authors contributed equally and are listed in alphabetical order.

training or fine-tuning. Moreover, to democratize 3D digital
twin creation, it is essential to integrate creation techniques
with next-generation egocentric computing platforms, such
as AR glasses. Currently, there is no dataset available to
evaluate 3D object reconstruction using egocentric captured
images. To address these gaps, the DTC dataset features
2,000 scanned digital twin-quality 3D objects, along with
image sequences captured under different lighting condi-
tions using DSLR cameras and egocentric AR glasses. This
dataset establishes the first comprehensive real-world evalu-
ation benchmark for 3D digital twin creation tasks, offering
a robust foundation for comparing and improving existing
reconstruction methods. The DTC dataset is already re-
leased at https://www.projectaria.com/datasets/dtc/ and we
will also make the baseline evaluations open-source.
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Figure 2. Example DTC models with photorealistic PBR materials.

1. Introduction

A digital twin of a 3D object is a highly detailed, virtually
indistinguishable representation of a physical object, cap-
turing its shape, appearance, physical properties and other
attributes with precision. Such a digital twin enables visual-
ization, analysis, and interaction as if it were the real object,
supporting simulation, automation, and real-world problem-
solving across a wide range of applications in AR/VR [3, 28],
spatial/contextual AI [2], and robotics [23, 43]. As funda-
mental properties of an object, its shape and appearance
form the basis for recognizing and interpreting the 3D object,
enabling identification, manipulation, and realistic rendering.
Recovering these attributes has long been a foundational
topic in computer vision and graphics, inspiring extensive
research in 3D reconstruction and inverse rendering. Recent
breakthroughs in neural-based representation and reconstruc-
tion techniques, such as NeRF [52] and 3D Gaussian splat-
ting (3DGS) [37], have significantly elevated the quality of
novel view synthesis (NVS) to photorealistic levels. Many
subsequent works [35, 62] integrate neural reconstruction
with physically-based inverse rendering, enabling relightable
appearances. Furthermore, leveraging priors from large re-
construction models (LRMs) [30], high-quality shape and
appearance reconstruction can now be achieved with as few
as one to four views [41, 69, 82].

Despite the rapid advancements in 3D object reconstruc-
tion, one question remains: does the reconstruction quality
truly meet the standard of a digital twin, where virtual repre-
sentations are indistinguishable from reality? This digital
twin standard demands both highly accurate shape match-
ing and photorealistic appearance across different light-
ing, which present significant acquisition challenges for real-
world objects. Existing object-centric datasets for 3D recon-

struction or inverse rendering have focused on either dataset
size [18] or quality of specific aspects [16, 21, 34, 46, 61, 73],
often sacrificing comprehensive fidelity and limiting their
application scope. This trade-off has led to a lack of datasets
that fully satisfy the digital twin criteria, hindering current
3D reconstruction methods from achieving digital twin fi-
delity. To bridge this gap, we developed the Digital Twin
Catalog (DTC) dataset, comprising 2,000 scanned 3D object
models (Fig. 1(a)), each with millimeter geometry accuracy
and photorealistic PBR materials (Fig. 1(b), Fig. 2).

In addition to 3D digital twin models, the DTC dataset
includes evaluation data designed to support 3D object re-
construction research. This evaluation data features multi-
view image sequences with precise foreground object masks
and environment lighting information for relighting eval-
uation. Traditionally, high-quality HDR images captured
with modern DSLR cameras have been the standard for
3D reconstruction research. Looking ahead, we encour-
age the integration of 3D reconstruction research with next-
generation human-centric computing platforms, such as ego-
centric AR glasses, aiming to democratize 3D reconstruction
techniques and empower everyone to effortlessly create 3D
digital twins. To this end, alongside DSLR-captured eval-
uation data (Fig. 1(c)), the DTC dataset also provides ego-
centric evaluation data captured using Project Aria glasses
(https://www.projectaria.com) (Fig. 1(d)).

The DTC dataset offers extensive opportunities for ad-
vancing research in object digital twin creation. We provide
a benchmark for state-of-the-art 3D object reconstruction
and inverse rendering methods These benchmarks evaluate
performance across novel view synthesis (NVS), shape re-
construction, and relightable appearance reconstruction. We
further provide the evaluation of novel view synthesis meth-
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Table 1. Comparison with existing object-centric inverse rendering datasets. *Objaverse [18] consists of both synthetic objects and real
scans, only part of which contain PBR materials.

Dataset # Objects Real Scene Type Multi-view Shape PBR Mat. Relit Image Lighting Egocentric Cap.

ShapeNet-Intrinsics [61] 31K ✗ synthetic ✓ ✓ ✗ ✓ ✓ ✗
NeRD Synthetic [11] 3 ✗ synthetic ✓ ✓ ✓ ✓ ✓ ✗
ABO [16] 8K ✗ synthetic ✓ ✓ ✓ ✓ ✓ ✗

MIT Intrinsics [25] 20 ✓ studio ✓ ✗ ✗ ✗ ✗ ✗
DTU-MVS [34] 80 ✓ studio ✓ ✓ ✗ ✗ ✗ ✗
Objaverse [18] 818K (✓)* studio ✓ ✓ (✓)* ✗ ✗ ✗
DiLiGenT-MV [42] 5 ✓ studio ✓ ✓ ✗ ✗ ✓ ✗
ReNe [65] 20 ✓ studio ✓ ✗ ✗ ✗ ✓ ✗
OpenIllumination [46] 64 ✓ studio ✓ ✗ ✓ ✓ ✓ ✗
GSO [21] 1030 ✓ studio ✓ ✓ ✗ ✗ ✗ ✗
Lombardi et al. [47] 6 ✓ in-the-wild ✗ ✓ ✗ ✓ ✓ ✗
NeRD Real [11] 4 ✓ in-the-wild ✓ ✗ ✓ ✓ ✗ ✗
NeROIC [38] 3 ✓ in-the-wild ✓ ✗ ✓ ✓ ✗ ✗
Oxholm et al. [56] 4 ✓ in-the-wild ✓ ✓ ✗ ✓ ✓ ✗
OmniObject3D [73] 6k ✓ in-the-wild ✓ ✓ ✗ ✗ ✗ ✗
Stanford Orb [39] 14 ✓ in-the-wild ✓ ✓ ✓ ✓ ✓ ✗
DTC (ours) 2k ✓ in-the-wild ✓ ✓ ✓ ✓ ✓ ✓

ods using the egocentric aligned DTC data. Additionally,
we explore the dataset’s potential in downstream robotics
applications by assessing its effectiveness in training robotic
policies for pushing and grasping tasks in simulation. These
benchmarks and applications provide valuable insights, high-
light existing challenges, and uncover promising directions
for future research in 3D digital twin creation.

2. Related Work

We provide a comparison of our DTC dataset to existing
object-centric datasets in Table 1. We provide the largest
3D dataset with PBR materials and real world multi-view
recordings with digital twin counterparts. We further provide
digital twin aligned egocentric recordings, the first of their
kind in the egocentric domain. We will discuss the related
datasets and methods they can empower as follows.

3D Digital Twin Datasets Existing 3D digital twin datasets
with PBR materials often serve as ground truth for evalu-
ating inverse rendering results. Early efforts [6, 25] pro-
vide small-scale intrinsic image of real objects and do
not provide shape or PBR material information. Syn-
thetic datasets [11, 16, 45, 61, 70, 72] are widely used
for evaluation but do not represent the complexity in a
real world environment. For datasets that contain real ob-
jects, [18, 34, 42, 47, 56, 65], the reconstruction quality can
vary, which leads to imprecise evaluations. Table 1 provides
a comparison to the previous work in this domain. Compared
to Objaverse[18, 19], which is a collection of existing 3D
models with only a small subset containing PBR materials
with varying quality, we offer a high quality collection of
3D object data that is also aligned with real world record-
ings. Compared to OmniObject3D [73], the DTC models

provide higher-quality shape and additional PBR materials
that are necessary for high quality inverse rendering. We
offer the largest quantity of 3D object models compared to
all counterparts in various tasks. For real-world evaluation,
Stanford-ORB [39] was the prior largest inverse rendering
benchmark with in-the-wild lighting. In contrast, we pro-
vide more object diversity and higher quality for each object
model. The Aria Digital Twin dataset [58] was the first
dataset to provide digital twin aligned environments for the
scenes and recorded using egocentric device. However, their
scene environments are limited and the contained object
ground truths inside do not have high quality geometries
with PBR materials.

Object Reconstruction & Inverse Rendering. Using
object-centric multi-view images as input, early object re-
construction methods focused on estimating individual ob-
ject properties, such as shape from shading [5, 9, 83],
material acquisition [44, 45, 56, 57, 74], and lighting es-
timation [67, 78]. Some approaches also aimed to re-
cover reflectance and illumination assuming known object
shapes [47, 48]. Inverse rendering, which seeks to invert the
rendering equation [36], estimates an image’s intrinsic com-
ponents—geometry, materials, and lighting. The advent of
differentiable renderers [14, 15, 49] enabled full-fledged in-
verse rendering methods to simultaneously recover all these
properties for object reconstruction [50].

Neural volumetric representations such as Neural Radi-
ance Fields (NeRFs) [52] and the like [7, 11–13, 59, 79, 84]
encode geometry and appearance as volumetric densities and
radiance with a Multi-Layer Perceptron (MLP) network, and
render images using the volume rendering equation [51]. 3D-
GS [37] introduces 3D Gaussian primitives and rasterization
and its following-up variants [31] demonstrates high quality
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geometry prediction as well.
Other surface-based representations [29, 53, 62, 66, 71,

80, 81, 85] extract surfaces as the zero level set, for in-
stance, of a signed distance function (SDF) or an occupancy
field [55], allowing them to efficiently model the appear-
ance on the surface with an explicit material model, such
as bidirectional reflectance distribution functions (BRDFs).
This also enables modeling more complex global illumi-
nation effects, such as self-shadows. Most of these meth-
ods focus on per-scene optimization and require dense
multiple views as input. Recently, researchers have in-
corporated learning-based models, distilling priors from
large training datasets for fast inference on limited test
views [8, 10, 33, 45, 61, 70, 72, 86].

In this work, we provide the DTC dataset with real-world
object recordings that can serve as the benchmark to evaluate
object-centric inverse rendering tasks. We evaluate represen-
tative baselines from existing work.

3. Digital Twin Catalog: A Large-Scale Photo-
realistic 3D Object Digital Twin Dataset

3.1. Dataset Composition
Our DTC dataset contains: (1) 2,000 scanned 3D object mod-
els, featuring millimeter geometric accuracy relative to their
physical counterparts, along with a full set of photorealistic
PBR material maps (Fig. 1), (2) 100 DSLR-captured evalu-
ation data of 50 objects under different lighting conditions,
and (3) 200 egocentric Aria-captured evaluation data of 100
objects with both active and casual observation modes.

3.2. Creation of 3D Object Models
Utilizing the state-of-the-art industrial 3D object scan-
ner [1], we selected 2,000 physical-world objects spanning
40 LVIS [27] categories, carefully chosen to ensure both
category diversity and compatibility with the scanner’s capa-
bilities. As illustrated in Fig. 3(a) (c), the scanner features
a fixed lighting-camera setup within an upper-hemisphere
dome, equipped with 8 structured lights for geometry scan-
ning, and 29 spotlights and 29 cameras for material acquisi-
tion. During the scanning process, the object is placed on a
central holder, and its pose can be adjusted with multi-round
scanning to achieve a complete 360-degree scan. For our
dataset, each object typically undergoes three pose changes,
with a total scanning time of approximately 20 minutes per
object.

After scanning, a proprietary post-processing pipeline
reconstructs both the geometry and the PBR material maps.
For 4K-resolution PBR material maps, the post-processing
requires approximately 4 hours per object. In terms of qual-
ity, the structured-light-based shape reconstruction (Fig. 3
(b)) in the post-processing achieves millimeter-level geomet-
ric accuracy. However, the material optimization process

Figure 3. 3D object scanner by Covision Media®.

Figure 4. Rendered DTC models (left) v.s. Photo (Right).

performs best for diffuse objects and often struggles with
glossy or shiny surfaces. To address this limitation, we hired
technical artists to develop a workflow to refine materials for
glossy and shiny objects, ensuring that the material quality
meets the standards of a digital twin.
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Figure 5. Shape and material (albedo) quality comparison between
Stanford-ORB [39] (left) and our DTC (right).

3D Model Accuracy. To validate the material and geometry
accuracy of the 3D models, we compared a rendered image
of our scanned and processed model with a photograph of
the same object taken inside a light box. A virtual light box
was meticulously modeled to replicate the light intensity
and color temperature of the real light box. The scanned
object was then placed in the virtual light box to generate the
rendered image. The side-by-side comparison demonstrates
a remarkable match between the rendered and real images
(Fig. 4).

Comparison Against Stanford-ORB. We also scanned the
objects used in Stanford-ORB [39] to compare the shape and
appearance quality. As illustrated in Fig. 5, the Stanford-
ORB models exhibit shape artifacts and noisy, lower-quality
materials compared to our models.

3.3. DSLR Evaluation Data
Within DTC, we include a DSLR-captured evaluation dataset
of 50 objects from Sec. 3.2 captured under two different
lighting conditions, resulting in 100 distinct image sequences.
For every sequence, we provide (a) approximately 120 HDR
and LDR images from different viewing directions, (b) one
object pose and (c) per-image camera pose. The two lighting
conditions are represented using two environment maps.

Data Capture. To ensure the DSLR evaluation data quality,
we designed and built a DSLR camera rig to automate the
capture process (Fig. 6). The rig is designed to rotate the
cameras around the centralized object, assuming the envi-
ronment lighting remains unchanged during the capture. It
features a motorized rotary stage with a centrally mounted
stationary platform. Attached to the rotary stage is an ex-
trusion frame that forms the gantry arm, supported by a
set of castors to bear its weight and enable smooth rotation
around the central axis. The extrusion frame is equipped
with adjustable camera mounts, allowing DSLR cameras to
be positioned flexibly to optimize the capture setup. For our
capture process, we utilized three DSLR cameras to perform
a 360-degree rotation around the object, capturing images
at 9-degree intervals, resulting in 120 photos per object. To
ensure precise camera pose estimation, a ChArUco board

Figure 6. DSLR rig for capturing evaluation data.

was placed beneath the object during the capture. Example
images from this setup are shown in Fig. 6.
Environment Maps. Following a similar approach in
Stanford-ORB [39], we capture the two environment maps
using chrome ball images obtained with the capture rig de-
scribed earlier. With precise camera poses provided by a
ChArUco board placed beneath the chrome ball, we first
fit a synthetic 3D sphere to the chrome ball by optimizing
its 3D position using a geometry-friendly differentiable ren-
derer [40, 75]. Subsequently, using a differentiable Monte
Carlo-based renderer [32], we refine the environment map
to match the reflection on the chrome ball, employing the
single-view light estimation method proposed in [78]. The
coordinate system of the environment map is determined by
the ChArUco detection.
Pose Registration for Camera and Object. We first ob-
tain the initial camera poses using the ChArUco board. In
most cases, for images captured from the top and middle
views, the pose estimates are typically accurate. However,
for bottom-view images, inaccuracies arise due to pattern
distortion at grazing angles. To mitigate this issue, we re-
fine the camera poses by fitting the rendering of a virtual
ChArUco board to the real captured photo using a differen-
tiable renderer [32, 40, 75]. Once the camera poses have
been accurately refined, we optimize the object pose by
minimizing the mask loss between the rendered mask and
the reference one generated by [62]. By providing separate
poses for camera and object anchored by ChArUco, the cam-
eras and object are automatically aligned with the optimized
environment maps.

3.4. Egocentric Evaluation Data
We include an evaluation dataset of real world recordings
captured by an egocentric device paired with 100 objects
from the DTC dataset. We capture the egocentric recordings
using the open-sourced Project Aria device [22] and acquire
the additional 3D ground truth using its machine percep-
tion tool, which includes online device calibration, device
trajectory and semi-dense point clouds for each recording.
Each recording contains a single 3D object and precisely
aligned object poses in the Aria trajectory coordinate frame.
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Figure 7. The workflow to align egocentric video and 3D objects. We acquire the object’s semi-dense point cloud from the egocentric
recording and the neural reconstructed mesh using Neural-PBIR [62]. Finally, we align the 3D object with the rendered mask from the
neural reconstructed mesh using physics-based differentiable rendering (PBDR).

Both the object and the trajectory are in metric scale. We
can derive additional ground truth for each video from the
aligned 3D object properties.

Data Capture. To feature real world recordings observed
from human perspectives that can be representative of 3D
object reconstruction for AR/MR devices or robots, we pro-
vide two types of recording trajectories for selected objects,
termed active and passive respectively, collected by human
wearers. The active recording features a complete 360 view
of the objects, which is similar to existing object 3D novel
view synthesis dataset. The passive recording features ca-
sual looks from human wearer, which only contain partial
views of the object from certain viewing angles along the
trajectory. In dataset creation, we collected the active and
passive recordings in the same environment and generate
their 3D information in the shared 3D space. This helps
reduces potential failures when aligning the object to pas-
sive 3D recordings, which are shorter and contains less 3D
information. To reduce the effect of noises and motion blur,
which are common in egocentric videos in indoor low light
environments, we light the capture environment to 3K+ lux
illumination and used a fixed low-exposure and gain profile
to collect each recording with the appropriate brightness.

Alignment between Egocentric Video and Object. We
provide an illustration of the object alignment to the egocen-
tric video in Fig. 7. Given the images, camera poses and
semi-dense point cloud acquired from Project Aria tools, we
employ a neural-based mesh reconstruction method [62] to

create reference meshes for generating high-quality refer-
ence masks and used that to align with the corresponding
3D object mesh. This alignment step serves as an initial-
ization for a more precise pose refinement, which leverages
differentiable rendering. For certain objects with symmetric
geometry, we observe this process can introduce ambigui-
ties in point cloud registration and subsequent failures. To
address such cases, we provide a GUI to manually align
and correct the object alignment. Finally, akin to the DSLR
camera pose registration phase, we optimize a mask loss
over object poses to achieve fine-tuned pose registration.

4. Benchmarking and Applications
We first use our DLSR and egocentric dataset as a benchmark
for existing state-of-the-art methods. For inverse rendering,
we design metrics to evaluate the shape and material quality
of the recovered 3D object digital twin from three perspec-
tives. For egocentric recording, we evaluate the novel-view
synthesis as the initial evaluation. We include additional
tasks, e.g. sparse view reconstruction in the supplementary
materials for both DSLR and egocentric recordings. Finally
we can demonstrate our high quality 3D digital twin models
can be beneficial to robotics domain using an application in
robotics manipulation.

4.1. Application to Inverse Rendering for DSLR
The DSLR dataset in DTC provides accurate ground truth, in-
cluding poses, lighting and 3D models, for inverse rendering
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Table 2. Benchmark comparison of existing methods on inverse rendering for DSLR. Depth SI-MSE and Shape Chamfer distance ×10−3.

Geometry Novel Scene Relighting Novel View Synthesis

Depth↓ Normal↓ Shape↓ PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓

Neural-PIL [12] 5.71 0.25 25.02 N/A 28.42 35.76 0.882 0.096
PhySG [80] 0.31 0.16 11.31 27.28 32.86 0.959 0.049 28.54 34.46 0.964 0.045
NVDiffRec [53] 0.02 0.07 1.64 26.99 33.27 0.951 0.037 28.95 34.92 0.967 0.029
NeRD [11] 4.55 0.45 108.20 26.10 32.60 0.948 0.061 26.80 33.40 0.882 0.102
InvRender [71] 0.22 0.03 0.75 29.52 35.98 0.961 0.037 31.64 37.82 0.970 0.033
NVDiffRecMC [29] 0.02 0.06 1.34 27.78 34.55 0.952 0.042 31.27 38.17 0.972 0.032

Table 3. Benchmark on the egocentric aligned recordings.

PSNR ↑ LPIPS ↓ SSIM ↑ Depth ↓ Normal ↓

3D-GS [37] 28.81 0.020 0.9888 0.1768 0.3301
2D-GS [31] 28.75 0.020 0.9886 0.1755 0.2112

tasks and serves as an evaluation suite to benchmark the per-
formance of inverse rendering methods. We select six prior
methods for this task and evaluate their performance using
the ground truth provided by our dataset. In the following
sections, we describe the data splitting strategy, evaluation
metrics, and baselines.
Data Splitting. For benchmarking purposes, we select 15
objects from the DSLR dataset captured under two distinct
lighting environments, resulting in a total of 30 image se-
quences. The selected objects encompass a diverse range of
geometric and material properties to ensure a comprehensive
evaluation. For each scene, 8 views are selected for testing,
while the remaining views are reserved for training.
Evaluation Metrics. The metrics measure the accuracy of
three aspects of baseline performance: geometry estimation ,
relighting, and novel view synthesis. For geometry estima-
tion, we evaluate the accuracy of predicted depth and normal
maps under held-out test views, as well as 3D meshes ex-
tracted from baseline methods, compared with the ground
truth from our dataset. Relighting metrics evaluate the ma-
terial decomposition quality of baselines by measuring the
accuracy of predicted images under held-out lighting condi-
tions. For view synthesis, we compare the predicted images
from viewpoints unseen during training to ground truth cap-
tures. We refer to Kuang et al. [39] for metric details.
Baselines. We include the following baselines: NVD-
iffRec [53] and NVDiffRecMC [29], with a hybrid shape
representation DMTet [60]; InvRender [85] and PhySG [80],
which adopt signed distance functions (SDFs) to represent
object geometry [76] and utilize implicit neural fields for
material decomposition; Neural-PIL [12] and NeRD [11],
which use NeRFs [52] as scene representations.

4.2. Application to Egocentric Reconstruction
Our digital twin models, aligned with real world video using
the method described in Sec. 3.4, can help obtain accurate

ground truth for object-centric images that were previously
difficult to acquire. We provide the first evaluation of object-
centric novel view synthesis recorded from an egocentric
device. We use the projected object shape given the 3D pose
of the object and cameras in scene coordinates to acquire the
image masks, depth and normal for each object. We selected
15 recordings from the egocentric recording sessions as the
evaluation and used the active recordings to benchmark novel
view reconstruction. For each recording, we hold out every
8th image view as a testing view.

Evaluations. We build our baselines based on the
gsplats [77] implementation of the 3D Gaussian Splatting
(GS) [37] and 2D GS [31], and handle the effect of lens
shading from the Project Aria lens [26]. We calculate PSNR,
depth and normal based on the observed objects with masks
and provide SSIM and LPIPS score on images by masking
out the non-object areas as black. Table 3 shows the bench-
mark results of the baselines. We use the same depth and
normal metric in DSLR evaluation. We provide additional
qualitative evaluations and analyses on egocentric data to-
wards sparser view settings in the supplementary materials.

4.3. Application to Robotic Manipulation
High-quality object models have been leveraged in prior
work to train real-world robotic agents in scenes represented
explicitly [54] or implicitly [64]. These object models have
also been shown to facilitate object-centric pose and lighting
parameter estimation, enabling model-based planning [63].
In this section, we empirically evaluate the effectiveness
of using DTC dataset objects in training robotic policies.
Specifically, we consider learning robotic pushing and grasp-
ing skills in simulation.

First, we sample a subset of 24 cup category objects
from the DTC dataset and 24 cup objects from Objaverse-
XL [19] 1. Since not all Objaverse-XL objects come with
textures, we randomize the colors of those objects uniformly
in RGB space. To compute collision meshes for physical
simulation, we perform convex decomposition on each ob-
ject with CoACD [68]. We import these objects along with
a UR5e robot equipped with a Robotiq 2F-85 (pushing) or

1The version of Objaverse-XL used in this work excludes all 3D models
sourced from Sketchfab.
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Task DTC (ours) Objaverse-XL [19]

Pushing @ 2cm 36.3%± 1.5% 25.3%± 6.0%
Pushing @ 3cm 43.7%± 1.2% 29.7%± 6.0%
Pushing @ 5cm 47.0%± 2.6% 40.3%± 5.5%
Grasping 42.7%± 4.7% 38.6%± 11.0%

Table 4. Success rate of policies trained on data collected using
objects from our DTC dataset and sampled from Objaverse-XL
when evaluated on an unseen test object. Errors indicate sample
standard deviation over three policy training seeds.

Robotiq 2F-140 (grasping) gripper into the PyBullet simula-
tor [17] and collect data for each robotic task as described
below. After training policies on data from each object set,
we evaluate policy performance on a relatively high-quality
unseen test object from the StanfordORB dataset [39].

Pushing. For the pushing task, we collect 5000 trajectories
of pseudo-random robotic interaction data for each object
set. For each trajectory, a single object from the considered
object set and its initial position are randomly selected. Then
we train a goal-conditioned neural network policy π(a|o, og)
where o is an image observation of the current scene and og is
a goal image indicating the desired final object and robot po-
sition, o, og ∈ R256×256×3, and the action a ∈ R2 represents
a change in the robot’s end-effector position in the x and y
axes. The z axis end-effector height is held fixed. We sample
goals for training via hindsight relabeling [4, 20, 24]. We
then perform evaluation on 100 randomly sampled test goals
manipulating an unseen test cup from StanfordORB [39].

Grasping. For grasping, we collect 5000 successful grasp
examples for each object set by first placing a single object
into the scene, randomizing the object identity and initial
position. We then randomly sample candidate grasp poses
in a radius around the object’s position and simulating their
outcomes, rejecting unsuccessful grasps. We train a grasping
policy π(a|o) where o ∈ R256×256×3 is an image observa-
tion of the scene and a ∈ R4 represents the x, y, z position
and θ yaw rotation of the robot end-effector at which to
attempt the grasp. Again we use 100 test cup object poses.

Results. We report the results in Table 4 and Fig. 8. We
find that across both pushing and grasping tasks, policies
trained on DTC dataset objects outperform those trained on
Objaverse-XL objects when evaluated on the unseen test ob-
ject. For pushing, we report performance by defining binary
success thresholds based on the final Euclidean distance of
the object position to the goal position. Training on DTC
objects appears to be especially helpful at enabling policies
to make finer adjustments, improving pushing success rates
at stricter thresholds. Additional experimental details can be
found in the supplementary.

Figure 8. Success rates on robotic pushing task when training with
our DTC objects and sampled Objaverse-XL objects. Particularly at
lower error thresholds, policies trained on DTC objects outperform
those trained using Objaverse-XL objects. Shaded bars represent
sample standard deviations over policy training random seeds.

5. Conclusion
We presented a new large scale photorealistic 3D digital
twin dataset with the real world recordings that contain its
real world counterpart. We provide extensive evaluations of
baselines on our DTC dataset serving as new benchmark for
inverse rendering and novel view synthesis task. We also
demonstrated that high quality digital twin models can be
beneficial to applications in robotics domain. We believe our
efforts can empower the research community to build and
leverage digital twin models for future applications.

Limitations. Achieving high quality digital twin models cur-
rently requires deliberate hardware setup and human efforts
in refinement. Solving this challenge without sacrificing
quality can significantly further enhance the volume of dig-
ital twin models. Our hardware is also limited to objects
within a certain size and can not yet recover objects that are
deformable, highly specular, or transparent.

Future work. The existing digital twin model creation in
DTC dataset involves lengthy post-processing and may re-
quire subjective human refinement, hindering the automa-
tion of model generation. However, recent advancements
in physics-based differentiable rendering hold promise for
enabling faster and more accurate creation of digital twins,
especially for material reconstruction. Furthermore, build-
ing large-scale digital twins for applications will necessitate
efforts to enhance the diversity in object appearance (e.g.,
transparent objects) and to capture additional attributes, such
as physical properties and functionalities.

For robotics applications, while deploying manipulation
policies learned in simulation to the real world remains gen-
erally challenging, we hope that the high-quality digital twin
data provided by DTC can serve as a stepping stone towards
effective sim-to-real transfer.
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