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Mesh distortion optimization is a popular research topic and has wide range

of applications in computer graphics, including geometry modeling, varia-

tional shape interpolation, UV parameterization, elastoplastic simulation,

etc. In recent years, many solvers have been proposed to solve this nonlinear

optimization efficiently, among which projected Newton has been shown to

have best convergence rate and work well in both 2D and 3D applications.

Traditional Newton approach suffers from ill conditioning and indefiness of

local energy approximation. A crucial step in projected Newton is to fix this

issue by projecting energy Hessian onto symmetric positive definite (SPD)

cone so as to guarantee the search direction always pointing to decrease

the energy locally. Such step relies on time consuming Eigen decomposition

of element Hessian, which has been addressed by several work before on

how to obtain a conjugacy that is as diagonal as possible. In this report, we

demonstrate an analytic form of Hessian eigen system for distortion energy

defined using principal stretches, which is the most general representation.

Compared with existing projected Newton diagonalization approaches, our

formulation is more general as it doesn’t require the energy to be repre-

sentable by tensor invariants. In this report, we will only show the derivation

for 3D and the extension to 2D case is straightforward.
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1 INTRODUCTION
There have already been many interesting mesh distortion optimiza-

tion solvers so far [Bouaziz et al. 2014; Claici et al. 2017; Kovalsky

et al. 2016; Liu et al. 2018, 2017; Peng et al. 2018; Rabinovich et al.

2017; Shtengel et al. 2017; Sin et al. 2011; Smith et al. 2018, 2019;

Stomakhin et al. 2012; Teran et al. 2005; Xu et al. 2015; Zhu et al.

2018]. As this is just a technical report on hessian diagonalization,

we will only include the references here instead of going to detailed

discussion one by one. The most related previous work are [Smith

et al. 2018, 2019; Stomakhin et al. 2012; Teran et al. 2005]. However,

they either assume that the distortion energy can be represented

using tensor invariants or just achieve a block diagonal structure.

In this work, we will show the analytic eigen system of element

hessian whose energy is defined using principal stretches, which is

more general representation of mesh distortion. For any 3D mesh

distortion energy defined using principal stretches, we prove that

its diagonal form is composed of six scalars and one 3×3 block. De-
pending on the energy definition, the 3×3 block might also have an

analytic diagonalization.
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2 RELATED WORK

2.1 Distortion Energies
Mesh distortion optimization is largely characterized by distortion

energy. Many fundamental physical and geometric modeling prob-

lems reduce to minimizing measures of distortion over meshes. A

wide range of energies have been proposed to fullfil such tasks for

various application purposes. Linear approaches have the benefit

of good performance as the distortion energies adopted are usu-

ally modeled as quadratic and require only a single linear system

factorization [Lipman et al. 2005; Weber et al. 2009, 2007; Zayer

et al. 2005], but they also suffer from severe artifacts under large

deformations. On the other hand, nonlinear measurement requires

more sophisticated solvers but behaves well even for extreme defor-

mations.

Diverse range of nonlinear energies have been proposed to mini-

mize various mapping distortions in the field of geometry process-

ing, generally focused on minimizing either measures of isomet-

ric [Aigerman et al. 2015; Chao et al. 2010; Liu et al. 2008; Smith and

Schaefer 2015] or conformal [Ben-Chen et al. 2008; Desbrun et al.

2002; Hormann and Greiner 2002; Lévy et al. 2002; Mullen et al. 2008;

Weber et al. 2012] distortion. As rigid as possible (ARAP), as similar

as possible (ASAP) and as killing as possible (AKAP) are three al-

terative ways to minimize isometric/conformal distortions [Alexa

et al. 2000; Igarashi et al. 2005; Solomon et al. 2011; Sorkine and

Alexa 2007]. Other type energies like Dirichlet energy [Schüller

et al. 2013], maximal stretch energy [Sorkine et al. 2002] and Green-

Lagrange energy [Bonet and Wood 2008] are also popular choices

for applications.

Distortion optimization is also applicable to physical based ani-

mation which typically minimizes hyperelastic potentials formed by

integrating strain energy densities over the material domain to sim-

ulate elastic solids with large deformations. These material models

date back to Mooney [Mooney 1940] and Rivlin [Rivlin 1948]. Their

Mooney-Rivlin and Neo-Hookean materials, and many subsequent

hyperelastic materials, e.g. St. Venant-Kirchoff, Ogden, Fung [Bonet

and Burton 1998], are constructed from empirical observation and

analysis of deforming real-world materials. Material properties in

these models are specified according to experiment for scientific

computing applications [Ogden 1972], or alternately are directly

set by users in other cases [Xu et al. 2015], e.g., to meet artistic

needs. Modified energy model [Stomakhin et al. 2012] has also been

proposed in computer graphics to stablize physical simulation.

There are various ways to parameterize the aforementioned dis-

tortion energies, including strain tensor invariants [Teran et al.

2005], stretch tensor invariants [Smith et al. 2019], principal stretches

(singular values of mapping Jacobian) [Stomakhin et al. 2012; Xu

et al. 2015], etc. Among these options, principal stretch is the most

general parameterization approach as it not only covers both 2D

and 3D cases but also plays a more fundamental role than the others

in defining distortion measurement. Moreover, it has been shown

that principal stretch based distortion energy is more user-friendly
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and can be manipulated or modified for application purposes more

easily and intuitively [Stomakhin et al. 2012; Xu et al. 2015].

2.2 First Order Methods
To obtain deformed mesh with optimal distortion measured by en-

ergies we just introduced, many solvers have been proposed and

studied so far. The local-global method has been recognized as one

of the most popular approaches and applied to many applications,

including surface modeling [Sorkine and Alexa 2007], parameteri-

zation [Liu et al. 2008] and volumetric deformation [Bouaziz et al.

2014], etc. Not until recent years did researchers find out that such

method is closely related to Sobolev gradient [Neuberger 2006, 2010].

Kovalsky et al. [2016] extended this method by introducing accel-

eration to speed up its convergence, while Liu et al. [2017] instead

combined it with L-BFGS for the same goal. Other notable solver

improvement includes iterative reweighting Laplacianmethod [Rabi-

novich et al. 2017] and killing vector field proximal algorithm [Claici

et al. 2017]. Both methods improve solver convergence by using

more effective quadratic approximation during each iteration but

also require solving a new linear system at every step. To overcome

such issue, alternative approaches, which focus on efficient way of

constructing effective local approximation, have been proposed by

Zhu et al. [2018] and Peng et al. [2018], both of which are variants of

Broyden class method. All the listed techniques are regarded as first

order methods as they rely on linear approximation of distortion

energy. Other first order methods, like Gauss Newton [Eigensatz

and Pauly 2009], block coordinate descent [Fu et al. 2015] and L-

BFGS [Smith and Schaefer 2015], are also used in graphics applica-

tions, but they all share the poor convergence rate problem, which

leads to the extensive study of efficient second order solvers.

2.3 Second Order Methods
Second order methods generally can achieve the most rapid conver-

gence for convex energies but requires modification for nonconvex

ones [Nocedal and Wright 2006] to ensure that the proxy is at least

positive semi-definite (PSD). At each iterate, the distortion energy

hessian is evaluated to form a proxy matrix and special care must

be taken in order to handle its indefiness. Trust region could be a

quick fix to this problem and actually has been adopted by several

previous work [Chao et al. 2010; Schüller et al. 2013]. However,

finding the proper window size could require much more extra com-

putational cost without any simplification, like the Dogleg method.

Another popular strategy is fixed Newton which attracts lots of

attention from research community in recent years. Composite ma-

jorization, a tight convex majorizer, was recently proposed as an

analytic PSD approximation of the hessian [Shtengel et al. 2017]. Its

proxy is efficient to assemble, but is limited to 2D problems. More

general is the projected Newton method that projects per-element

hessians to the PSD cone prior to assembly [Fu and Liu 2016; Stom-

akhin et al. 2012; Teran et al. 2005; Xu et al. 2015]. However, these

approaches still depend on numerical constructions of projected

hessian and do not yield closed-form expressions for the underlying

hessian’s eigen pairs. Chen and Weber [2017] developed analytic

hessian projection in a reduced basis setting but only applies to

2D planar cases. Energy specific approaches [McAdams et al. 2011;

Smith et al. 2018] are able to reveal the analytic eigen system of

certain distortion measurement, which are recently generalized by

Smith et al. [2019] to cover more isotropic energies representable in

stretch tensor invariants. Our work, as a further improvement over

existing approaches, provides closed-form expressions for eigen

values and eigen vectors of distortion energies parameterized by

principal stretches, which is the most general and convenient way

to define distortion measurement in both geometry and simulation

areas.

3 BACKGROUND
Mesh distortion optimization is a computational approach to find

mapping relationship between two domains, reference and deformed,

in 2D or 3D. It has wide range of useful and essential applications in

computer graphics field, for instance, planar animation, UV parame-

terization, geometry modeling, elastoplastic simulation, variational

shape interpolation, etc. The goal is to preserve local metrics as

much as possible with respect to constraints if any. Such problem

starts from meshes, X, that discretize the reference domain and

looks for optimal deformed meshes, x, satisfying given constraints.

(See Figure 1 as an illustration example.) Optimality judgement

depends on the local metrics to be preserved. One practical and

Reference Mesh
Deformed Mesh

Distortion Optimization

Constraints

Fig. 1

popular direction to solve this problem is through formulating it as

a constrained nonlinear local optimization problem,

min

x
EX (x)

s.t. x ∈ C,
(1)

where C denotes the feasible set or region. Applying traditional con-

strained optimization techniques directly, like proximal gradient,

barrier method, primal dual interior point method, etc, either suffers

from slow convergence rate or stability issue caused by problem

indefiness. In recent years, it attracts lots of attention and inter-

ests from researchers who proposed various efficient and stable

solvers for this problem, including preconditioned gradient descent

[Bouaziz et al. 2014; Claici et al. 2017; Kovalsky et al. 2016; Liu et al.

2018; Rabinovich et al. 2017], variants of quasi-Newton [Liu et al.

2017; Peng et al. 2018; Zhu et al. 2018] and fixed Newton methods

[Shtengel et al. 2017; Smith et al. 2018, 2019; Stomakhin et al. 2012;

Teran et al. 2005]. Among these approaches, fixed Newton methods

demonstrate the most promising second order convergence rate

property, especially when close to the local optimum. Like tradi-

tional Newton method, such approaches iteratively look for the

solution where the mesh distortion energy gradient, ∇EX (x), van-
ishes. During each iteration, a crucial step is to solve a linear system
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for the solution update direction,

Hp = −∇EX, (2)

whereH represents energy hessian and p is the update direction.

For monotonic energy descent approaches, H is required to be

symmetric positive definite (SPD) in order to guarantee converged

iterations. However, for general nonlinear energy, like EX, its hes-
sian usually doesn’t hold such property everywhere within the

feasible region C. It is well known that the indefiness or negative

definess of H will cause the Newton iteration diverge. In order

to stabilize the solver, fixed Newton methods first projectH onto

SPD cone and then use its SPD projection,H
+
, to solve for update

direction,

H
+p = −∇EX . (3)

Composite majorization[Shtengel et al. 2017] obtains the projection

through convex-concave decomposition of EX and uses the convex

part’s hessian asH
+
, but so far efficient decomposition method is

limited to 2D setting only. Projected Newton methods adopt the

more general eigen decomposition approach,

H = K𝑇
𝚲K ⇒ H

+ = K𝑇
𝚲
+K, (4)

by clamping all negative and nearly zero eigenvalues of 𝚲 to a small

positive threshold, where 𝚲
+
is the clamped diagonal eigenvalue ma-

trix. However, cost of eigen decomposition grows very quickly as the

system size increases. To overcome this problem, researchers [Stom-

akhin et al. 2012; Teran et al. 2005] explored and found that they

can first efficiently convertH into a block diagonal form through

congruent transformation and then only apply eigen decomposi-

tion to small sub-blocks, which is much faster than applying toH

directly. Recently, Smith et al. [2018; 2019] further improve this

result by assuming the distortion energy, EX, is representable using
invariants of stretch tensor. In such cases, they show that at least

2

3

portion in 3D and
1

2
portion in 2D of eigenvalues have analytical

expressions. Even though such assumption already covers many

popular energy choices used in geometry and physical simulation

problems, it still restricts its application to limited range of distor-

tion energy considering energy that can be defined by more atomic

representation, principal stretches. We are showing in this work

that for more general energy defined using principal stretches, the

same portion of eigenvalues can always be evaluated analytically.

Whether analytic expressions exist for the left portion of eigenval-

ues depends on the energy definition in terms of principal stretches

and can be told by studying a small matrix, 3×3 in 3D and 2×2 in
2D.

3.1 Problem Definition
For the ease of explaination, we assume the reference domain is

discretized using P1 element for 2D and 3D problems and our deriva-

tion should be generalizable to other types of elements, like P2, Q1,

S1, etc. Moreover, in this paper, we only discuss 3D case and it’s

straightforward to extend our analysis to 2D case. Our input would

be a 3D reference domain discretized using conforming tetrahedra

mesh with piecewise linear shape functions. The function space

spanned by these piecewise linear basis is supposed to contain an

approximate domain deformation solution, whose approximation

error should be orthogonal to this function space. We use X𝑖 to

represent position of reference mesh’s vertex 𝑖 and x𝑖 to represent

its corresponding position in deformed mesh. Each position vec-

tor will have three entries in 3D, for example, x𝑖 = [x𝑖0, x𝑖1, x𝑖2]𝑇 ,
representing its 𝑥-, 𝑦- and 𝑧- coordinates. In order to find optimal

deformed mesh with minimal distortion with respect to reference

X, we need to define distortion energy, EX, that measures the de-

formation quality. A common choice adopted in computer graphics

community to define EX is by aggregating distortion of each mesh

element

EX =
∑︁
𝑡

𝐴𝑡ΨX (x), (5)

where 𝐴𝑡 is the volume of 𝑡-th tetrahedra in reference mesh X
and ΨX (·) is the distortion kernel that measures a single element’s

deformation. It’s clear that due to linearity of differential operator,

energy hessianH would be linear combination of mesh elements’

kernel hessian,

H =
∑︁
𝑡

𝐴𝑡
˜H𝑡 , (6)

which also implies that we can enforce kernel hessian to be SPD in-

stead of enforcing energy hessian directly. The benefit is that we can

largely reduce the problem size of the SPD projection step. As distor-

tion kernel, ΨX, is defined per mesh element, which only involves

four vertices of a tetrahedra,
˜H has a low rank decomposition,

˜H = P𝑇HP, (7)

where P ∈ R12×3𝑛
is a permutation matrix for mesh with 𝑛 vertices

andH ∈ R12×12
is the second order differential ofΨX with respect to

single tetrahedra element’s 12 vertex coordinates. Projected Newton

methods then explore various approaches to efficiently diagonalize

H in order to apply SPD projection as in Equation 4. As this projec-

tion need to be applied for every mesh element during each iteration,

its computational cost will severely affect the solver’s performance.

Conventional eigen decomposition method relies on two-step al-

gorithm, Householder reflection and shifted QR iteration, whose

efficiency is not acceptable for per element computation. Existing

projected Newton methods either rely on numerical eigenvalue com-

putation or only support limited distortion energy. In this work, we

present an analytic eigen system for the most general representation

of distortion energy parameterized using principal stretches. For

distortion energy that is representable using invariants of stretch

tensor, it’s not surprising to see that our results match exactly what

have been shown by Smith et al. [2019]. However, our approach

is much more flexible and applicable to a much broader class of

distortion energy.

As we are interested in how to diagonalize per element H effi-

ciently, it’s enough to focus on single tetrahedar case. To simplify

math notation, we will use X𝑖 and x𝑖 , 𝑖 ∈ {0, 1, 2, 3} to represent the
element’s four vertices in reference and deformed mesh. Moreover,

if we assume the reference mesh never changes, which is usually

the assumption adopted by geometry optimization and hyperelastic

simulation, we can drop the subscript and use Ψ to represent distor-

tion kernel. For situations where reference mesh does change, like

plastic deformation, our derivation can be extended very easily.
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3.2 Energy Parameterization
An essential property of Ψ is rigid motion invariant, which means it

remains constant when rotating or translating the deformed mesh.

For isotropic energy, such invariant property also holds when ref-

erence mesh is under rigid motion. There are quite a few ways to

define Ψ to satisfy this requirement, among which the most atomic,

general and popular approach in both geometry and simulation

fields is using principal stretch 𝜎 . 𝜎 is defined as the singular value

of deformation gradient F = 𝜕x
𝜕X . For piecewise linear shape function,

it can be evaluated as

F = D𝑤D−1

𝑚 ,

D𝑤 =
[
x1 − x0, x2 − x0, x3 − x0

]
,

D𝑚 =
[
X1 − X0, X2 − X0, X3 − X0

]
.

(8)

And the principal strecthes are evaluated by its singular value de-

compostion (SVD),

F = U𝚺V𝑇 ,

𝚺 =


𝜎0

𝜎1

𝜎2

 ,
(9)

For energy that accepts invertible configuration, we adopt signed

SVD where U and V are always rotation matrix. Thus we can pa-

rameterize distortion kernel through 𝜎 as

Ψ(x) B Ψ(𝜎0 (x), 𝜎1 (x), 𝜎2 (x)). (10)

The first order differential of Ψ can then be evaluated as

∇Ψ =



𝜕Ψ
𝜕x00

𝜕Ψ
𝜕x01

𝜕Ψ
𝜕x02

.

.

.
𝜕Ψ
𝜕x30

𝜕Ψ
𝜕x31

𝜕Ψ
𝜕x32


,
𝜕Ψ

𝜕x𝑖 𝑗
=

2∑︁
𝑘=0

𝜕Ψ

𝜕𝜎𝑘

𝜕𝜎𝑘

𝜕x𝑖 𝑗
, (11)

and its second order differential H can be written as

H =


𝜕2Ψ

𝜕x00𝜕x00

· · · 𝜕2Ψ
𝜕x00𝜕x32

.

.

.
. . .

.

.

.
𝜕2Ψ

𝜕x32𝜕x00

· · · 𝜕2Ψ
𝜕x32𝜕x32

 , (12)

where each entry is defined as

𝜕2Ψ

𝜕x𝑖𝑝 𝜕x𝑗𝑞
=

2∑︁
𝑘=0

2∑︁
𝑙=0

𝜕2Ψ

𝜕𝜎𝑘𝜎𝑙

𝜕𝜎𝑙

𝜕x𝑖𝑝
𝜕𝜎𝑘

𝜕x𝑗𝑞
+

2∑︁
𝑘=0

𝜕Ψ

𝜕𝜎𝑘

𝜕2𝜎𝑘

𝜕x𝑖𝑝 𝜕x𝑗𝑞
. (13)

Other choices of parameterization are also possible, for example,

invariants of stretch tensor [Smith et al. 2019], 𝐼1 =
∑
𝑖 𝜎𝑖 , 𝐼2 =∑

𝑖 𝜎
2

𝑖
, 𝐼3 =

∏
𝑖 𝜎𝑖 , or invariants of Cauchy-Green strain tensor

[Teran et al. 2005], 𝐼 =
∑
𝑖 𝜎

2

𝑖
, 𝐼 𝐼 =

∑
𝑖≠𝑗 𝜎

2

𝑖
𝜎2

𝑗
, 𝐼 𝐼 𝐼 =

∏
𝑖 𝜎𝑖 , which

are all easily representable in principal stretches but not vice versa.

Thus our work provides the most general analysis framework for

eigen system of H.

3.3 SVD Differential
Before diving into the detailed discussion, we introduce one more

concept, SVD differential, which serves as an essential building block

to our eigen analysis. Even though SVD computation (Equation 9)

relies on iterative numerical algorithms, SVD differential provides

analytical derivatives of SVD components as long as parameteriza-

tion of F is given. Here we just list several important results that

will be used in our later discussion and leave all detailed derivations

in Appendix A. Suppose F is parameterized by some scalar 𝑥 , then

we have

𝜕𝜎𝑖

𝜕𝑥
= U𝑇

𝑖

𝜕F
𝜕𝑥

V𝑖 ,U𝑇 𝜕U
𝜕𝑥

= 𝜔𝑢
𝑥 ,

𝜕V𝑇

𝜕𝑥
V = −𝜔𝑣

𝑥 , (14)

where both 𝜔𝑢
𝑥 and 𝜔𝑣

𝑥 are skew-symmetric matrix,

𝜔 =


0 𝜔0 𝜔1

−𝜔0
0 𝜔2

−𝜔1 −𝜔2
0

 . (15)

Their entries can be computed by solving three 2×2 linear systems,

such as [
𝜎1 −𝜎0

−𝜎0 𝜎1

] [
𝜔𝑢0

𝑥

𝜔𝑣0

𝑥

]
=

[
U𝑇

0

𝜕F
𝜕𝑥V1

U𝑇
1

𝜕F
𝜕𝑥V0

]
. (16)

Such systems will become singular when two principal stretches

are identical or sum to zero, which is a numerical stability issue

that requires special treatment as shown in previous work [Sin

et al. 2011; Stomakhin et al. 2012; Xu et al. 2015]. Same as Smith et

al.[Smith et al. 2019], we avoid such annoying numerical artifact by

providing the analytical eigen system directly. Finally, we still need

the second order derivatives of principal stretches. Suppose now F
can be parameterized by 𝑥 and 𝑦, then we have

𝜕2
𝚺

𝜕𝑥𝜕𝑦
= diag(𝜔𝑢

𝑥𝚺𝜔
𝑣
𝑦 + 𝜔𝑢

𝑦𝚺𝜔
𝑣
𝑥 − 𝚺𝜔𝑣

𝑥𝜔
𝑣
𝑦 − 𝜔𝑢

𝑦𝜔
𝑢
𝑥𝚺), (17)

where diag(·) extracts the diagonal part of the input matrix.

4 EIGEN ANALYSIS
In this section, we will show the derivation of finding the eigen

system for distortion kernel’s second order differential H defined

in Equation 12. We demonstrate that for 3D problems, H has a null

space of dimension three and six of its eigen pairs can be analytically

obtained while whether the other three have analytical expressions

depends on the kernel definition in terms of principal stretches. As

an overview of our approach, we first explore the null space of H
and reduce our problem from H ∈ R12×12

to H̃ ∈ R9×9
. Next, we

show that the H̃ can be decomposed into one 3×3 block and one

6×6 diagonal block that contains the eigen values with analytical

expressions. Finally, we apply our results to several energy kernel

examples to demonstrate its flexibility and usefulness. Again, we

will only provide results of essential steps and encourage interested

readers to appendix for detailed derivations.

4.1 From R12×12 To R9×9

We first show that H ∈ R12×12
can be factorized as H = K𝑇 H̃K,

K ∈ R9×12
, H̃ ∈ R9×9

. This is due to the fact that H has a null

space of dimension three. For 3D P1 element, we have the following
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equality always hold,

𝜕Ψ

𝜕x0

+ 𝜕Ψ

𝜕x1

+ 𝜕Ψ

𝜕x2

+ 𝜕Ψ

𝜕x3

≡ 0. (18)

Intuitively, this means kernel derivative acts passively. Or if we take

a physical point of view, internal forces should cancel out when

there is no external forces. Detailed proof is provided in Appendix B.

An immediate result is that we can represent
𝜕Ψ
𝜕x𝑖 using the other

three. For example, Equation 11 can be rewritten as

∇Ψ =



𝜕Ψ
𝜕x00

𝜕Ψ
𝜕x01

𝜕Ψ
𝜕x02

.

.

.

−( 𝜕Ψ
𝜕x00

+ 𝜕Ψ
𝜕x10

+ 𝜕Ψ
𝜕x20

)
−( 𝜕Ψ

𝜕x01

+ 𝜕Ψ
𝜕x11

+ 𝜕Ψ
𝜕x21

)
−( 𝜕Ψ

𝜕x02

+ 𝜕Ψ
𝜕x12

+ 𝜕Ψ
𝜕x22

)


, (19)

where we replace the last three entries with linear combination of

the first nine ones. Similar idea can also be applied to H which is

derivative of ∇Ψ. If we divide H into a block 2×2 form,

H =

[
H̃ H̄
H̄𝑇 Ĥ

]
, H̃ =


𝜕2Ψ

𝜕x00𝜕x00

· · · 𝜕2Ψ
𝜕x00𝜕x22

.

.

.
. . .

.

.

.
𝜕2Ψ

𝜕x22𝜕x00

· · · 𝜕2Ψ
𝜕x22𝜕x22

 , (20)

then entries of H̄ ∈ R9×3
and Ĥ ∈ R3×3

can be represented as

linear combination of entries in H̃ ∈ R9×9
. Notice H̃ is the second

order differential of distortion kernel with respect to just the first

three element vertex coordiantes, which excludes the fourth one’s

coordinates. As shown in Appendix C, we can thus have

K =


I −I

I −I
I −I

 (21)

satisfying H = K𝑇 H̃K. Here I is 3 × 3 identity matrix.

4.2 Analytic Decomposition of ˜H
Given the above factorization result, we only need to show how SPD

projection can be efficiently applied to H̃ in the following. Thus

we are going to demonstrate how H̃ can be analytically decom-

posed into one 3×3 block and one 6×6 diagonal block. According to
Equation 13, we can also separate H̃ into two terms,

H̃ = H̃# + H̃∗
, (22)

where entries of H̃#

and H̃∗
are

∑
2

𝑘=0

∑
2

𝑙=0

𝜕2Ψ
𝜕𝜎𝑘𝜎𝑙

𝜕𝜎𝑙
𝜕x𝑖𝑝

𝜕𝜎𝑘
𝜕x𝑗𝑞

and∑
2

𝑘=0

𝜕Ψ
𝜕𝜎𝑘

𝜕2𝜎𝑘
𝜕x𝑖𝑝𝜕x𝑗𝑞

, 𝑖, 𝑗, 𝑝, 𝑞 ∈ {0, 1, 2} correspondingly. It’s easy to

see that if both H̃#

and H̃∗
are SPD, H̃ is also SPD. Again we are

going to decompose them into some simpler forms where SPD

projection is efficient to be applied. We will show that H̃#

can be

decomposed into a 3×3 block that only depends on distortion kernel

definition in terms of principal stretches while H̃∗
can be decom-

posed into diagonal form. Based on entry formulation of H̃#

, it’s easy

to see that it has the following decomposition, H̃#

= (K̃#)𝑇 D̃#K̃#

,

where

D̃#

=


𝜕2Ψ

𝜕𝜎0𝜕𝜎0

𝜕2Ψ
𝜕𝜎0𝜕𝜎1

𝜕2Ψ
𝜕𝜎0𝜕𝜎2

𝜕2Ψ
𝜕𝜎1𝜕𝜎0

𝜕2Ψ
𝜕𝜎1𝜕𝜎1

𝜕2Ψ
𝜕𝜎1𝜕𝜎2

𝜕2Ψ
𝜕𝜎2𝜕𝜎0

𝜕2Ψ
𝜕𝜎2𝜕𝜎1

𝜕2Ψ
𝜕𝜎2𝜕𝜎2

 , K̃
#

=


𝜕𝜎0

𝜕x00

· · · 𝜕𝜎0

𝜕x22

𝜕𝜎1

𝜕x00

· · · 𝜕𝜎1

𝜕x22

𝜕𝜎2

𝜕x00

· · · 𝜕𝜎2

𝜕x22

 .
(23)

As D̃#

is the second order differential of distortion kernel with re-

spect to principal stretches, it only requires kernel definition, which

is usually provided before hand, to determine its diagonalizabil-

ity. In ??, we will utilize this decomposition to provide analytical

eigen pairs for several distortion kernel examples. In cases where

no analytical eigen expressions exist for this 3×3 system, we adopt

numerical solutions instead.

For H̃∗
, it’s not easy to see similar decomposition immediately.We

leave all detailed derivations in Appendix D and give the essential

steps here. Similar to Equation 22, we first separate H̃∗
into three

terms,

H̃∗
= H̃∗0,1 + H̃∗1,2 + H̃∗2,0

, (24)

where each termwill have a decomposition. Next, we take H̃∗0,1
as an

illustration example and the other two can be decomposed in similar

manner. As a first step, we obtain the following decomposition,

H̃∗0,1
= (K̃★0,1 )𝑇 D̃★0,1 K̃★0,1

, K̃★0,1
=

[
𝜔𝑢0

x00

· · · 𝜔𝑢0

x22

𝜔𝑣0

x00

· · · 𝜔𝑣0

x22

]
,

D̃★0,1
=

[
𝜎0

𝜕Ψ
𝜕𝜎0

+ 𝜎1

𝜕Ψ
𝜕𝜎1

−(𝜎0

𝜕Ψ
𝜕𝜎1

+ 𝜎1

𝜕Ψ
𝜕𝜎0

)
−(𝜎1

𝜕Ψ
𝜕𝜎0

+ 𝜎0

𝜕Ψ
𝜕𝜎1

) 𝜎1

𝜕Ψ
𝜕𝜎1

+ 𝜎0

𝜕Ψ
𝜕𝜎0

]
,

(25)

where each column vector of K̃★0,1 ∈ R2×9
can be obtained by

solving a small 2×2 linear system as shown in Equation 16. Thus

we have[
𝜔𝑢0

x𝑖𝑝
𝜔𝑣0

x𝑖𝑝

]
=

1

𝜎2

1
− 𝜎2

0

[
𝜎1 𝜎0

𝜎0 𝜎1

] [U𝑇
0

𝜕F
𝜕x𝑖𝑝 V1

U𝑇
1

𝜕F
𝜕x𝑖𝑝 V0

]
, 𝑖, 𝑝 ∈ {0, 1, 2}. (26)

By regrouping matrix products, we obtain a new decomposition for

H̃∗0,1
as (K̃•0,1 )𝑇 D̃•0,1 K̃•0,1

, where

D̃•0,1
=

1

(𝜎2

1
− 𝜎2

0
)2

[
𝜎1 𝜎0

𝜎0 𝜎1

]𝑇
D̃★0,1

[
𝜎1 𝜎0

𝜎0 𝜎1

]
,

K̃•0,1
=

[
U𝑇

0

𝜕F
𝜕x00

V1 · · · U𝑇
0

𝜕F
𝜕x22

V1

U𝑇
1

𝜕F
𝜕x00

V0 · · · U𝑇
1

𝜕F
𝜕x22

V0

]
.

(27)

In this case, we can diagonalize D̃•0,1
as

D̃•0,1
=

[
−1 1

1 1

]𝑇 
𝜕Ψ
𝜕𝜎

0

− 𝜕Ψ
𝜕𝜎

1

𝜎0−𝜎1

0

0

𝜕Ψ
𝜕𝜎

0

+ 𝜕Ψ
𝜕𝜎

1

𝜎0+𝜎1


[
−1 1

1 1

]
. (28)

To see this more clearly, we first separate D̃•0,1
into sum of the

following two terms,

D̃•0,1
=

𝜕Ψ
𝜕𝜎0

− 𝜕Ψ
𝜕𝜎1

2(𝜎0 − 𝜎1)

[
1 −1

−1 1

]
+

𝜕Ψ
𝜕𝜎0

+ 𝜕Ψ
𝜕𝜎1

2(𝜎0 + 𝜎1)

[
1 1

1 1

]
, (29)
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where the two constant 2×2 matrices have simple diagonal forms as[
1 −1

−1 1

]
=

[
−1 1

1 1

]𝑇 [
2 0

0 0

] [
−1 1

1 1

]
,[

1 1

1 1

]
=

[
−1 1

1 1

]𝑇 [
0 0

0 2

] [
−1 1

1 1

]
.

(30)

Notice both matrices share the same eigen space, so we can combine

these two factorizations together and obtain Equation 28. Finally,

given the above results, we can diagonalize H̃∗0,1
through decompo-

sition, (K̃∗0,1 )𝑇 D̃∗0,1 K̃∗0,1
, where

D̃∗0,1
=


𝜕Ψ
𝜕𝜎

0

− 𝜕Ψ
𝜕𝜎

1

𝜎0−𝜎1

0

0

𝜕Ψ
𝜕𝜎

0

+ 𝜕Ψ
𝜕𝜎

1

𝜎0+𝜎1

 , K̃∗0,1
=

[
−1 1

1 1

]
K̃•0,1

. (31)

For the other two matrices, H̃∗1,2
and H̃∗2,0

, we can obtain similar

results, which justifies our claim that six eigen pairs of H have

analytical forms. If we combine all the derivations from this section

together, we obtain the analytical decomposition of H as

H = K𝑇 H̃K = K𝑇 K̃𝑇 D̃K̃K,

D̃ =


D̃#

D̃∗0,1

D̃∗1,2

D̃∗2,0

 , K̃ =


K̃#

K̃∗0,1

K̃∗1,2

K̃∗2,0

 .
(32)

Moreover, the six eigen values with analytical expressions may

cause numerical instability issues as sum and difference of principal

stretches appear as denominators (see Equation 28). At the first

glance, such annoying problem seems to be unavoidable but depends

on the distortion kernel definition.
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A SVD DIFFERENTIAL
We provide detailed derivations to compute SVD differential as

shown in Equation 14 and Equation 17. If F is parameterized by 𝑥

and according to SVD factorization as well as product rule, we can

have the following result by taking derivative with respect to 𝑥 on

both sides of Equation 9,

𝜕F
𝜕𝑥

=
𝜕U
𝜕𝑥

𝚺V𝑇 + U
𝜕𝚺

𝜕𝑥
V𝑇 + U𝚺

𝜕V𝑇

𝜕𝑥

⇒U𝑇 𝜕F
𝜕𝑥

V = U𝑇 𝜕U
𝜕𝑥

𝚺 + 𝜕𝚺

𝜕𝑥
+ 𝚺

𝜕V𝑇

𝜕𝑥
V.

(33)

If we already know F in terms of 𝑥 , then we can compute rotation

differential
𝜕U
𝜕𝑥 ,

𝜕V𝑇

𝜕𝑥 and singular value differential
𝜕𝚺
𝜕𝑥 given the

fact thatU𝑇 𝜕U
𝜕𝑥 ,

𝜕V𝑇

𝜕𝑥 V are skew-symmetric and
𝜕𝚺
𝜕𝑥 is diagonal. This

is also known as SVD gradient, which has been investigated before

[Papadopoulo and Lourakis 2000]. To compute first order derivative

of distortion kernel, ∇Ψ, this is already enough as we only need to

know
𝜕𝚺
𝜕𝑥 . In order to compute second order derivative, H, we also

need to evaluate U𝑇 𝜕U
𝜕𝑥 ,

𝜕V𝑇

𝜕𝑥 V and the second order derivative of

singular values. If now F is parameterized by 𝑥 and 𝑦, we can apply

similar trick as Equation 33,

𝜕2F
𝜕𝑥𝜕𝑦

=
𝜕2U
𝜕𝑥𝜕𝑦

𝚺V𝑇 + 𝜕U
𝜕𝑥

𝜕𝚺

𝜕𝑦
V𝑇 + 𝜕U

𝜕𝑥
𝚺

𝜕V𝑇

𝜕𝑦

+ 𝜕U
𝜕𝑦

𝜕𝚺

𝜕𝑥
V𝑇 + U

𝜕2
𝚺

𝜕𝑥𝜕𝑦
V𝑇 + U

𝜕𝚺

𝜕𝑥

𝜕V𝑇

𝜕𝑦

+ 𝜕U
𝜕𝑦

𝚺

𝜕V𝑇

𝜕𝑥
+ U

𝜕𝚺

𝜕𝑦

𝜕V𝑇

𝜕𝑥
+ U𝚺

𝜕2V𝑇

𝜕𝑥𝜕𝑦
,

⇒ U𝑇 𝜕2F
𝜕𝑥𝜕𝑦

V =U𝑇 𝜕2U
𝜕𝑥𝜕𝑦

𝚺 + U𝑇 𝜕U
𝜕𝑥

𝜕𝚺

𝜕𝑦
+ U𝑇 𝜕U

𝜕𝑥
𝚺

𝜕V𝑇

𝜕𝑦
V

+U𝑇 𝜕U
𝜕𝑦

𝜕𝚺

𝜕𝑥
+ 𝜕2

𝚺

𝜕𝑥𝜕𝑦
+ 𝜕𝚺

𝜕𝑥

𝜕V𝑇

𝜕𝑦
V

+U𝑇 𝜕U
𝜕𝑦

𝚺

𝜕V𝑇

𝜕𝑥
V + 𝜕𝚺

𝜕𝑦

𝜕V𝑇

𝜕𝑥
V + 𝚺

𝜕2V𝑇

𝜕𝑥𝜕𝑦
V.

(34)

Here we are interested in
𝜕2
𝚺

𝜕𝑥𝜕𝑦 , but the above equations also include

other unknowns,
𝜕2U
𝜕𝑥𝜕𝑦 and

𝜕2V𝑇

𝜕𝑥𝜕𝑦 . To get rid of them, we first spend

some effort to see what they look like. Suppose we have a rotation

matrix Q with parameterization 𝑥 and 𝑦. Then we can derive the

following result,

Q𝑇Q = I ⇒ 𝜕Q𝑇

𝜕𝑥
Q + Q𝑇 𝜕Q

𝜕𝑥
= O,

⇒ 𝜕2Q𝑇

𝜕𝑥𝜕𝑦
Q + 𝜕Q𝑇

𝜕𝑥

𝜕Q
𝜕𝑦

+ 𝜕Q𝑇

𝜕𝑦

𝜕Q
𝜕𝑥

+ Q𝑇 𝜕2Q
𝜕𝑥𝜕𝑦

= O,

⇒ 𝜕2Q𝑇

𝜕𝑥𝜕𝑦
Q + 𝜕Q𝑇

𝜕𝑥
QQ𝑇 𝜕Q

𝜕𝑦
+ 𝜕Q𝑇

𝜕𝑦
QQ𝑇 𝜕Q

𝜕𝑥
+ Q𝑇 𝜕2Q

𝜕𝑥𝜕𝑦
= O,

⇒ 𝜕2Q𝑇

𝜕𝑥𝜕𝑦
Q + 𝜕Q𝑇

𝜕𝑥
QQ𝑇 𝜕Q

𝜕𝑦
= −(Q𝑇 𝜕2Q

𝜕𝑥𝜕𝑦
+ 𝜕Q𝑇

𝜕𝑦
QQ𝑇 𝜕Q

𝜕𝑥
)

= −( 𝜕
2Q𝑇

𝜕𝑥𝜕𝑦
Q + 𝜕Q𝑇

𝜕𝑥
QQ𝑇 𝜕Q

𝜕𝑦
)𝑇 .

(35)

Thus U𝑇 𝜕2U
𝜕𝑥𝜕𝑦 + 𝜕U𝑇

𝜕𝑦 UU𝑇 𝜕U
𝜕𝑥 and

𝜕2V𝑇

𝜕𝑥𝜕𝑦V + 𝜕V𝑇

𝜕𝑥 VV𝑇 𝜕V
𝜕𝑦 are also

skew-symmetric. If we adopt the same math notation convention

used in Equation 14, we have

𝜔𝑢
𝑥 B U𝑇 𝜕U

𝜕𝑥
, 𝜔𝑢

𝑦 B U𝑇 𝜕U
𝜕𝑦

, 𝜔𝑣
𝑥 B − 𝜕V𝑇

𝜕𝑥
V, 𝜔𝑣

𝑦 B − 𝜕V𝑇

𝜕𝑦
V,

𝜔𝑢
𝑥𝑦 B U𝑇 𝜕2U

𝜕𝑥𝜕𝑦
+ 𝜕U𝑇

𝜕𝑦
UU𝑇 𝜕U

𝜕𝑥
= U𝑇 𝜕2U

𝜕𝑥𝜕𝑦
− 𝜔𝑢

𝑦𝜔
𝑢
𝑥 ,

𝜔𝑣
𝑥𝑦 B −( 𝜕

2V𝑇

𝜕𝑥𝜕𝑦
V + 𝜕V𝑇

𝜕𝑥
VV𝑇 𝜕V

𝜕𝑦
) = − 𝜕2V𝑇

𝜕𝑥𝜕𝑦
V + 𝜔𝑣

𝑥𝜔
𝑣
𝑦 .

(36)

Then we can rewrite Equation 34 as

U𝑇 𝜕2F
𝜕𝑥𝜕𝑦

V =(𝜔𝑢
𝑥𝑦 + 𝜔𝑢

𝑦𝜔
𝑢
𝑥 )𝚺 + 𝜔𝑢

𝑥

𝜕𝚺

𝜕𝑦
− 𝜔𝑢

𝑥𝚺𝜔
𝑣
𝑦

+𝜔𝑢
𝑦

𝜕𝚺

𝜕𝑥
+ 𝜕2

𝚺

𝜕𝑥𝜕𝑦
− 𝜕𝚺

𝜕𝑥
𝜔𝑣
𝑦

−𝜔𝑢
𝑦𝚺𝜔

𝑣
𝑥 − 𝜕𝚺

𝜕𝑦
𝜔𝑣
𝑥 − 𝚺(𝜔𝑣

𝑥𝑦 − 𝜔𝑣
𝑥𝜔

𝑣
𝑦) .

(37)

Notice that product of skew-symmetric matrix and diagonal matrix

has zero diagonals and the second order differential
𝜕2
𝚺

𝜕𝑥𝜕𝑦 is diagonal

matrix, we have

𝜕2
𝚺

𝜕𝑥𝜕𝑦
= diag(𝜔𝑢

𝑥𝚺𝜔
𝑣
𝑦 + 𝜔𝑢

𝑦𝚺𝜔
𝑣
𝑥 − 𝚺𝜔𝑣

𝑥𝜔
𝑣
𝑦 − 𝜔𝑢

𝑦𝜔
𝑢
𝑥𝚺 + U𝑇 𝜕2F

𝜕𝑥𝜕𝑦
V),
(38)

where diag(·) extracts the diagonal part of the input matrix. In our

P1 element setting, F is a linear function (see Equation 8), so its

second order derivative is always zero. Thus we can further simplify

our result and get Equation 17.

B ZERO NET ELEMENT DERIVATIVE
We then provide proof for the statement of Equation 18.

Proof. According to the definition of F in Equation 8, it’s easy

to verify that the following equality always holds for any 𝑝-th

coordinate,

3∑︁
𝑖=0

𝜕F
𝜕x𝑖𝑝

≡ O, ∀𝑝 ∈ {0, 1, 2}, (39)
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where O is a 3×3 zero matrix. Then according to Equation 14, we

have

3∑︁
𝑖=0

𝜕𝜎𝑘

𝜕x𝑖𝑝
= U𝑇

𝑘
(

3∑︁
𝑖=0

𝜕F
𝜕x𝑖𝑝

)V𝑘 ≡ 0, ∀𝑘 ∈ {0, 1, 2},

⇒
2∑︁

𝑘=0

𝜕Ψ

𝜕𝜎𝑘

3∑︁
𝑖=0

𝜕𝜎𝑘

𝜕x𝑖𝑝
≡ 0 ⇒

3∑︁
𝑖=0

𝜕Ψ

𝜕x𝑖𝑝
≡ 0, ∀𝑝 ∈ {0, 1, 2}.

(40)

As the above equality holds for any 𝑝-th coordinate, the statement

of Equation 18 is always true. □

C FROM R12×12 TO R9×9

Next we utilize the result just proved to show H = K𝑇 H̃K as in

Equation 20 and Equation 21. The key idea is that entries of H̄ and Ĥ
can be represented as linear combinations of entries from H̃, where

H̄ =


𝜕2Ψ

𝜕x00𝜕x30

· · · 𝜕2Ψ
𝜕x00𝜕x32

.

.

.
. . .

.

.

.
𝜕2Ψ

𝜕x22𝜕x30

· · · 𝜕2Ψ
𝜕x22𝜕x32

 ,

Ĥ =


𝜕2Ψ

𝜕x30𝜕x30

· · · 𝜕2Ψ
𝜕x30𝜕x32

.

.

.
. . .

.

.

.
𝜕2Ψ

𝜕x32𝜕x30

· · · 𝜕2Ψ
𝜕x32𝜕x32

 .
(41)

First, recall that Equation 18 holds true for every 𝑝-th coordinate

and we have,

𝜕Ψ

𝜕x0𝑝
+ 𝜕Ψ

𝜕x1𝑝
+ 𝜕Ψ

𝜕x2𝑝
+ 𝜕Ψ

𝜕x3𝑝
= 0, ∀𝑝 ∈ {0, 1, 2}. (42)

To compute entries of H̄, namely
𝜕2Ψ

𝜕x𝑗𝑞𝜕x3𝑝
, 𝑗, 𝑝, 𝑞 ∈ {0, 1, 2}, we

simply take derivative of Equation 42 with respect to x𝑗𝑞 , 𝑗, 𝑞 ∈
{0, 1, 2} and have

− ( 𝜕2Ψ

𝜕x𝑗𝑞𝜕x0𝑝
+ 𝜕2Ψ

𝜕x𝑗𝑞𝜕x1𝑝
+ 𝜕2Ψ

𝜕x𝑗𝑞𝜕x2𝑝
) = 𝜕2Ψ

𝜕x𝑗𝑞𝜕x3𝑝
. (43)

Then to compute entries of Ĥ, namely
𝜕2Ψ

𝜕x3𝑝𝜕x3𝑞
, 𝑝, 𝑞 ∈ {0, 1, 2}, we

again take derivative of Equation 42 with respect to x3𝑞 , 𝑞 ∈ {0, 1, 2}
and have

− ( 𝜕2Ψ

𝜕x3𝑞𝜕x0𝑝
+ 𝜕2Ψ

𝜕x3𝑞𝜕x1𝑝
+ 𝜕2Ψ

𝜕x3𝑞𝜕x2𝑝
) = 𝜕2Ψ

𝜕x3𝑞𝜕x3𝑝
. (44)

Thus we can represent every entry in H̄ and Ĥ through linear

combination of entries in H̃. With little bit more effort, it’s not hard

to show the result of Equation 21.

D DIAGONALIZATION OF ˜H∗

In order to decompose H̃∗
into diagonal form, we first expand its

entries and regroup them as

𝜕2𝜎0

𝜕𝑥𝜕𝑦
= (𝜔𝑢0

𝑥 𝜔𝑢0

𝑦 + 𝜔𝑣0

𝑥 𝜔𝑣0

𝑦︸                 ︷︷                 ︸
𝑆

0,1
𝑥,𝑦

+𝜔𝑢1

𝑥 𝜔𝑢1

𝑦 + 𝜔𝑣1

𝑥 𝜔𝑣1

𝑦︸                 ︷︷                 ︸
𝑆

2,0
𝑥,𝑦

)𝜎0

−(𝜔𝑢0

𝑦 𝜔𝑣0

𝑥 + 𝜔𝑢0

𝑥 𝜔𝑣0

𝑦︸                 ︷︷                 ︸
𝑇

0,1
𝑥,𝑦

)𝜎1 − (𝜔𝑢1

𝑦 𝜔𝑣1

𝑥 + 𝜔𝑢1

𝑥 𝜔𝑣1

𝑦︸                 ︷︷                 ︸
𝑇

2,0
𝑥,𝑦

)𝜎2,

𝜕2𝜎1

𝜕𝑥𝜕𝑦
= (𝜔𝑢0

𝑥 𝜔𝑢0

𝑦 + 𝜔𝑣0

𝑥 𝜔𝑣0

𝑦︸                 ︷︷                 ︸
𝑆

0,1
𝑥,𝑦

+𝜔𝑢2

𝑥 𝜔𝑢2

𝑦 + 𝜔𝑣2

𝑥 𝜔𝑣2

𝑦︸                 ︷︷                 ︸
𝑆

1,2
𝑥,𝑦

)𝜎1

−(𝜔𝑢0

𝑦 𝜔𝑣0

𝑥 + 𝜔𝑢0

𝑥 𝜔𝑣0

𝑦︸                 ︷︷                 ︸
𝑇

0,1
𝑥,𝑦

)𝜎0 − (𝜔𝑢2

𝑦 𝜔𝑣2

𝑥 + 𝜔𝑢2

𝑥 𝜔𝑣2

𝑦︸                 ︷︷                 ︸
𝑇

1,2
𝑥,𝑦

)𝜎2,

𝜕2𝜎2

𝜕𝑥𝜕𝑦
= (𝜔𝑢2

𝑥 𝜔𝑢2

𝑦 + 𝜔𝑣2

𝑥 𝜔𝑣2

𝑦︸                 ︷︷                 ︸
𝑆

1,2
𝑥,𝑦

+𝜔𝑢1

𝑥 𝜔𝑢1

𝑦 + 𝜔𝑣1

𝑥 𝜔𝑣1

𝑦︸                 ︷︷                 ︸
𝑆

2,0
𝑥,𝑦

)𝜎2

−(𝜔𝑢2

𝑦 𝜔𝑣2

𝑥 + 𝜔𝑢2

𝑥 𝜔𝑣2

𝑦︸                 ︷︷                 ︸
𝑇

1,2
𝑥,𝑦

)𝜎1 − (𝜔𝑢1

𝑦 𝜔𝑣1

𝑥 + 𝜔𝑢1

𝑥 𝜔𝑣1

𝑦︸                 ︷︷                 ︸
𝑇

2,0
𝑥,𝑦

)𝜎0,

(45)

where we adopt the same notation convention in Equation 15. Notice

here we use 𝑥 and 𝑦 to represent vertex coordinates. Then for each

entry of H̃∗
, we have

H̃∗
𝑥,𝑦 = [(𝑆0,1

𝑥,𝑦 + 𝑆
2,0
𝑥,𝑦)𝜎0 −𝑇

0,1
𝑥,𝑦𝜎1 −𝑇

2,0
𝑥,𝑦𝜎2]

𝜕Ψ

𝜕𝜎0

+[(𝑆0,1
𝑥,𝑦 + 𝑆

1,2
𝑥,𝑦)𝜎1 −𝑇

0,1
𝑥,𝑦𝜎0 −𝑇

1,2
𝑥,𝑦𝜎2]

𝜕Ψ

𝜕𝜎1

+[(𝑆1,2
𝑥,𝑦 + 𝑆

2,0
𝑥,𝑦)𝜎2 −𝑇

1,2
𝑥,𝑦𝜎1 −𝑇

2,0
𝑥,𝑦𝜎0]

𝜕Ψ

𝜕𝜎2

= [𝑆0,1
𝑥,𝑦𝜎0 −𝑇

0,1
𝑥,𝑦𝜎1]

𝜕Ψ

𝜕𝜎0

+ [𝑆0,1
𝑥,𝑦𝜎1 −𝑇

0,1
𝑥,𝑦𝜎0]

𝜕Ψ

𝜕𝜎1

+[𝑆1,2
𝑥,𝑦𝜎1 −𝑇

1,2
𝑥,𝑦𝜎2]

𝜕Ψ

𝜕𝜎1

+ [𝑆1,2
𝑥,𝑦𝜎2 −𝑇

1,2
𝑥,𝑦𝜎1]

𝜕Ψ

𝜕𝜎2

+[𝑆2,0
𝑥,𝑦𝜎0 −𝑇

2,0
𝑥,𝑦𝜎2]

𝜕Ψ

𝜕𝜎0

+ [𝑆2,0
𝑥,𝑦𝜎2 −𝑇

2,0
𝑥,𝑦𝜎0]

𝜕Ψ

𝜕𝜎2

.

(46)

Thus we can separate H̃∗
into the sum of three parts as shown in

Equation 24, where each part is defined as

H̃∗0,1

𝑥,𝑦 = [𝑆0,1
𝑥,𝑦𝜎0 −𝑇

0,1
𝑥,𝑦𝜎1]

𝜕Ψ

𝜕𝜎0

+ [𝑆0,1
𝑥,𝑦𝜎1 −𝑇

0,1
𝑥,𝑦𝜎0]

𝜕Ψ

𝜕𝜎1

,

H̃∗1,2

𝑥,𝑦 = [𝑆1,2
𝑥,𝑦𝜎1 −𝑇

1,2
𝑥,𝑦𝜎2]

𝜕Ψ

𝜕𝜎1

+ [𝑆1,2
𝑥,𝑦𝜎2 −𝑇

1,2
𝑥,𝑦𝜎1]

𝜕Ψ

𝜕𝜎2

,

H̃∗2,0

𝑥,𝑦 = [𝑆2,0
𝑥,𝑦𝜎0 −𝑇

2,0
𝑥,𝑦𝜎2]

𝜕Ψ

𝜕𝜎0

+ [𝑆2,0
𝑥,𝑦𝜎2 −𝑇

2,0
𝑥,𝑦𝜎0]

𝜕Ψ

𝜕𝜎2

.

(47)
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If we take a look at one of them, like H̃∗0,1

𝑥,𝑦 , we have

H̃∗0,1

𝑥,𝑦 = [𝑆0,1
𝑥,𝑦𝜎0 −𝑇

0,1
𝑥,𝑦𝜎1]

𝜕Ψ

𝜕𝜎0

+ [𝑆0,1
𝑥,𝑦𝜎1 −𝑇

0,1
𝑥,𝑦𝜎0]

𝜕Ψ

𝜕𝜎1

= (𝜔𝑢0

𝑥 𝜔𝑢0

𝑦 + 𝜔𝑣0

𝑥 𝜔𝑣0

𝑦 )𝜎0

𝜕Ψ

𝜕𝜎0

− (𝜔𝑢0

𝑦 𝜔𝑣0

𝑥 + 𝜔𝑢0

𝑥 𝜔𝑣0

𝑦 )𝜎1

𝜕Ψ

𝜕𝜎0

+ (𝜔𝑢0

𝑥 𝜔𝑢0

𝑦 + 𝜔𝑣0

𝑥 𝜔𝑣0

𝑦 )𝜎1

𝜕Ψ

𝜕𝜎1

− (𝜔𝑢0

𝑦 𝜔𝑣0

𝑥 + 𝜔𝑢0

𝑥 𝜔𝑣0

𝑦 )𝜎0

𝜕Ψ

𝜕𝜎1

= 𝜔𝑢0

𝑥 (𝜎0

𝜕Ψ

𝜕𝜎0

+ 𝜎1

𝜕Ψ

𝜕𝜎1

)𝜔𝑢0

𝑦 − 𝜔𝑢0

𝑥 (𝜎0

𝜕Ψ

𝜕𝜎1

+ 𝜎1

𝜕Ψ

𝜕𝜎0

)𝜔𝑣0

𝑦

− 𝜔𝑢0

𝑦 (𝜎1

𝜕Ψ

𝜕𝜎0

+ 𝜎0

𝜕Ψ

𝜕𝜎1

)𝜔𝑣0

𝑥 + 𝜔𝑣0

𝑥 (𝜎1

𝜕Ψ

𝜕𝜎1

+ 𝜎0

𝜕Ψ

𝜕𝜎0

)𝜔𝑣0

𝑦 .

(48)

Thus we know H̃∗0,1
has the decomposition as shown in Equation 25.

Similar derivations also apply to H̃∗1,2
and H̃∗2,0

.
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