
Simulating Rigid Body Fracture with Surface Meshes
(Supplemental Material)

Yufeng Zhu∗

University of British Columbia
Robert Bridson†

Autodesk, University of British Columbia
Chen Greif‡

University of British Columbia

1 Boundary Element Method

1.1 Indirect Boundary Integral Formulation

The indirect boundary integral formulation is inspired by the poten-
tial theory which is usually applied to Laplace’s equation (scalar or
vector). Considering the similarity between Laplace and the simi-
larly elliptic linear elastostatic problem, we apply this mathematical
tool to stress analysis. This forms a crucial ingredient in our mesh-
based fracture evolution algorithm. Here we briefly introduce the
potential theory used for Laplace’s problem and then describe how
we derive our elastostatic physical model.

1.2 Potential Theory

Take a closed codimensional one embedded submanifold ∂Ω, like
the contour of a circle in R2 or a sphere in R3. Let Ω ⊆ Rd be
the subdomain enclosed by ∂Ω, either interior or exterior, where
d is the dimension of our space. A boundary integral over such a
submanifold has the following form:

u(x) =

∮
∂Ω

ρ(y)Φ(‖x− y‖2)ds, x ∈ Ω, y ∈ ∂Ω. (1)

Here ds is an infinitesimal patch of ∂Ω, Φ(·) is the kernel func-
tion defined in Ω, and ρ(·) is the density function defined on the
submanifold. If we choose Φ(·) to be a fundamental solution of
Laplace’s equation, then u will be harmonic in Ω. To determine
ρ(·), we need to take boundary conditions into account, which in
our case are of Neumann type. Given a flux function f(·) on ∂Ω,
we require

∂u

∂n
(y) = f(y), y ∈ ∂Ω. (2)

However, to solve for ρ(·), we cannot simply replace the left hand
side of Equation 2 with a normal derivative of the boundary integral
in Equation 1. The reason is even though the boundary integral in
Equation 1 is continuous throughout Rd, its normal derivative is
continuous only in Ω or Ω̄ - ∂Ω and has a jump condition on the
submanifold. Such a jump condition can be stated as

∂u

∂n
(x) = α(x)ρ(x) +

∮
∂Ω

ρ(y)
∂Φ

∂n
(‖x− y‖2)ds

α(x) = sgn(∂Ω)
ω(x)Γ(d

2
)

2π
d
2

, x, y ∈ ∂Ω,

(3)

where ω(·) is the solid angle, Γ(·) is the Gamma function. α(x)

is ω(x)
2π

or ω(x)
4π

when d is 2 or 3 respectively. The function sgn(·)
is a sign function, which equals +1 if Ω represents an interior do-
main and−1 otherwise. Notice the normal n should be consistently
pointing out of the subdomain. By combining Equation 2 and Equa-
tion 3, we can solve for ρ(·). Once ρ(·) is computed, we can evalu-
ate u and∇u at any point in the space using Equation 1 or applying
the gradient operator to it.

∗e-mail:mike323@cs.ubc.ca
†e-mail:rbridson@cs.ubc.ca
‡e-mail:greif@cs.ubc.ca

What is described above is called a single layer potential and only
handles Laplace’s problem, while we are more interested in a more
general Poisson problem including the constant body force, due to
gravity in our case. Now we introduce a so-called Newton potential
which deals with the inhomogeneous term in Poisson’s equation.
Let’s take a look at Equation 1 again. If we apply Laplace’s operator
to both sides, we will get zero on both sides. Add a domain integral
on the right hand side, like

u(x) =

∮
∂Ω

ρ(y)Φ(‖x− y‖2)ds+g

∫
Ω

Φ(‖x− z‖2)dv

x, z ∈ Ω, y ∈ ∂Ω,

(4)

where g is the constant inhomogeneous term. It is easy to verify
that after applying Laplace’s operator to both sides of Equation 4,
g will remain on the right hand side:

∇2
xu(x) =

∮
∂Ω

ρ(y)∇2
x Φ(‖x− y‖2)ds+ g

∫
Ω

∇2
x Φ(‖x− z‖2)dv

=

∮
∂Ω

ρ(y)δ(‖x− y‖2)ds+ g

∫
Ω

δ(‖x− z‖2)dv

= 0 + g = g.

Here δ(·) is the Dirac delta function (or distribution). The extra
volume integral is named the Newton potential in Equation 4. To
finish the story, we need to take a further step by transforming the
volume integral into a boundary integral, by exploiting a higher or-
der fundamental solution Ψ of Laplace’s equation,

∇2Ψ(r) = Φ(r).

Then the Newton potential can be transformed into a boundary in-
tegral:

g

∫
Ω

Φ(‖x− z‖2)dv = g

∫
Ω

∇2Ψ(‖x− z‖2)dv

= g

∮
∂Ω

〈∇Ψ(‖x− y‖2), n〉ds.
(5)

Therefore the final indirect boundary integral formulation can be
written as

u(x) =

∮
∂Ω

ρ(y)Φ(‖x− y‖2)ds+g

∮
∂Ω

〈∇Ψ(‖x− y‖2), n〉ds

x ∈ Ω, y ∈ ∂Ω.

1.3 Elastostatic Model

In our case, we apply the same layer potential idea to the elastostatic
problem, representing the displacement field as

u(x) =

∮
∂Ω

Φ(‖x− y‖2)ρ(y)ds

+

∮
∂Ω

ℵ(‖x− y‖2)⊗2 g⊗3 nds,
(6)

where Φ(·) is a fundamental solution of the Navier-Cauchy equa-
tion and ⊗n is conventional n-mode tensor vector multiplication.
The above equation can be viewed as an analogy of Equation 5
in the elastostatic case, with ℵ(·) a third order tensor which cor-
responds to ∇Ψ(·). To compute ρ(·), we make use of the jump
condition again:

∂u
∂nx

(x) = α(x)ρ(x) +
∂

∂nx

∮
∂Ω

Φ(‖x− y‖2)ρ(y)ds

+
∂

∂nx

∮
∂Ω

ℵ(‖x− y‖2)⊗2 g⊗3 nds, x, y ∈ ∂Ω

= α(x)ρ(x) +

∮
∂Ω

∇xΦ(‖x− y‖2)ρ(y) · nxds

+

∮
∂Ω

∂ℵ(‖x− y‖2)

∂nx
⊗2 g⊗3 nds.

The boundary condition we have is an external force f(·) applied on
the boundary surface, which satisfies the following condition,

f(x) = σ(x) · n(x), x ∈ ∂Ω.

Considering the following relations,

σ(x) = C : ε(x),

ε(x) =
1

2
(F(x) + FT (x))− I,

F(x) = ∇u(x) + I,
∂u
∂nx

= ∇u · nx,

(7)

we propose the new formula by combining the jump condition and
the physical stationary property,

f(x) = α(x)ρ(x) +

∮
∂Ω

∂ℵ(‖x− y‖2)

∂nx
⊗2 g⊗3 nds

+
1

2

∮
∂Ω

C : [∇xΦ(‖x− y‖2)ρ(y)

+ (∇xΦ(‖x− y‖2)ρ(y))T] · nxds.

(8)

1.4 Discretization

In order to solve for the layer potential, we discretize Equation 8
using piecewise constant shape functions and adopt a collocation
scheme at triangle centroids, which leads to a dense linear system,

(D + A)ρ = f− g̃. (9)

In the above equation, D is a diagonal matrix whose nonzero entries
correspond to the jump condition, α(x)ρ(x), and f collects all the
discretized boundary tractions. A is a dense matrix corresponding
to the second boundary integral on the right-hand side of Equa-
tion 8, while g̃ corresponds to the first integral (see paper′s Section
4.3). It is trivial to assemble D and f, and we refer interested read-
ers to [Meßner 2008] for detailed explanation of assembling g̃. In
the sequel, we only provide the implementation details for A.

The matrix A is composed of k2 3×3 matrix block Aij , where k
is the number of triangles in the boundary mesh. Each block Aij
represents the interaction between triangles Ti and Tj . Given the
centroid p and surface normal n of Ti, centroid q and surface area
w of Tj as well as material properties, including the Poisson ra-
tio ν and the shear modulus G, we can compute Aij as follows.

The fundamental solution for Navier-Cauchy equation (see paper′s
Section 4.2) is

Φ(r)ij =
1

16πG(1− ν)r
[(3− 4ν)δij + r,ir,j] ,

which can be rewritten as

Φ(r) =
1

16πG(1− ν)

[
(3− 4ν)̄I + M̄

]

M̄ =
1

r

∂r
∂qx
· ∂r
∂qx

∂r
∂qx
· ∂r
∂qy

∂r
∂qx
· ∂r
∂qz

∂r
∂qy
· ∂r
∂qx

∂r
∂qy
· ∂r
∂qy

∂r
∂qy
· ∂r
∂qz

∂r
∂qz
· ∂r
∂qx

∂r
∂qz
· ∂r
∂qy

∂r
∂qz
· ∂r
∂qz

Ī =

1

r
I

r =
√

(qx − px)2 + (qy − py)2 + (qz − pz)2

∇qr =

∂r
∂qx
∂r
∂qy
∂r
∂qz

 =

 qx−px
rqy−py
rqz−pz
r

r = q− p.

Next, we compute ∇pΦ. Since Φ is a second order tensor, its gra-
dient will be third order. For notational clarity, let us present it in
standard form, avoiding Einstein notation. By making use of lin-
earity, we apply the gradient operator to each column of Φ (viewed
as a 3×3 matrix). Then we have

∇pΦ(r) =
1

16πG(1− ν)

[
(3− 4ν)∇pĪ +∇pM̄

]
.

Since the gradient is a third order tensor, it is useful to describe the
process by referring to individual columns. We use the first column,
denoted by col1(Φ), as an illustration example. We have used the
symbolic package Mathematica to obtain the values below:

∇pcol1(Φ)(r) =
(3− 4ν)∇pcol1(̄I) +∇pcol1(M̄)

16πG(1− ν)

∇pcol1(̄I) =
1

r3

rx ry rz
0 0 0
0 0 0

∇pcol1(M̄) =
1

r3

2rx − 3r3x
r2

− 3r2xry
r2

− 3r2xrz
r2

ry − 3r2xry
r2

rx −
3r2yrx
r2

− 3rxryrz
r2

ry − 3r2xrz
r2

− 3rxryrz
r2

rx − 3r2zrx
r2

.
Similarly, one can compute ∇pcol2(Φ) and ∇pcol3(Φ) analyti-
cally. Here we only provide their corresponding component:

∇pcol2(̄I) =
1

r3

 0 0 0
rx ry rz
0 0 0

∇pcol3(̄I) =

1

r3

 0 0 0
0 0 0
rx ry rz

∇pcol2(M̄) =
1

r3

ry − 3r2xry
r2

rx −
3r2yrx
r2

− 3rxryrz
r2

− 3r2yrx
r2

2ry −
3r3y
r2

− 3r2yrz
r2

− 3rxryrz
r2

rz −
3r2yrz
r2

ry − 3r2zry
r2

∇pcol3(M̄) =
1

r3

rz − 3r2xrz
r2

− 3rxryrz
r2

rx − 3r2zrx
r2

− 3rxryrz
r2

rz −
3r2yrz
r2

ry − 3r2zry
r2

− 3r2zrx
r2

− 3r2zry
r2

2rz − 3r3z
r2

Finally, we incorporate the constitutive law shown in Equation 7 to
assemble Aij :

S1 = 2GE1 +
2Gνtr(E1)

1− 2ν
I

E1 =
1

2

[
∇pcol1(M̄) +∇pcol1(M̄)T

]
After computing S2 and S3 in the same way, Aij is constructed as

Aij(p, q, n, w) = w
(
S1n, S2n, S3n

)
. (10)

We may now directly construct the matrix A by assembling all 3×3
matrix blocks, and then applying an iterative linear system solver
for nonsymmetric systems, such as BiCG-Stab or GMRES. After
solving for ρ, we can evaluate the displacement and stress informa-
tion by incorporating Equation 6 and Equation 7.

2 Fast Multipole Method

Solving the dense system described in the last section by apply-
ing an iterative solver may be inefficient. Even though the system
is well conditioned (and hence the iteration count is very small),
matrix-vector products take O(n2) floating point operations. By
replacing the standard matrix-vector multiplication in each itera-
tion with a fast summation method such as fast multipole method
(FMM), an asymptotic linear running time could be achieved to
solve the system. We refer interested readers to [Greengard and
Rokhlin 1987] for a thorough introduction of FMM. Matrix-vector
multiplication, Ax = b, can be viewed as an n body problem, where
x is a collection of particles’ masses that generate a gravity poten-
tial field. b stores the potential value evaluated at corresponding
particle’s position. Entry of A, Aij , represents a gravity potential
interaction between particle i and particle j. The idea can be gener-
alized by replacing the gravity potential kernel function with other
non-oscillatory decaying kernel functions, like the fundamental so-
lution of Laplace’s equation, the electro-static equation, the elasto-
static equation as well as all the boundary integral kernels used in
our paper. Instead of considering Equation 10, we stick with gravity
potential point of view to give a clear presentation of the algorithm.

2.1 Algorithm Introduction

Figure 1: n particles

Given n massive particles as shown
in Figure 1, we want to evaluate the
gravity potential generated by these
particles. In particular, we’d like to
evaluate the gravity potential at the
position of these particles. One can
definitely sum up all the contribu-
tions from each particle when consid-
ering the gravity potential at each po-
sition. However, the total complexity
is O(n2). A trivial way to reduce the
complexity is by introducing the con-
cept of center of mass. For example,

given two well separated clusters of n particles, evaluating gravity
potential generated by one cluster at the other cluster of particles
naively will take O(n2). A more economical approach will ap-
proximate the evaluation by first computing the center of mass for
each cluster, which costs O(n). Next we take O(1) operations to
evaluate the gravity potential generated by one center of mass at the
other one. Finally, we spread the computed gravity potentials from
the center of mass to all its neighboring particles. The total com-
putational cost for the proposed method is O(n), but the accuracy
depends on how well the clusters are separated. The above method

Figure 2: quad tree Figure 3: well separated cell

is used in Barnes-Hut [Barnes and Hut 1986] hierarchically and the
center of mass approximation is called monopole expansion. This
simple example provides an essential building block of FMM. A
complete description includes also the notion of hierarchical struc-
ture, multipole expansion, and near-far field decomposition.

Figure 4: particle to
multipole

The FMM algorithm starts with a
spatial division tree structure, usually
quad tree or octree as shown in Fig-
ure 2. At each tree level, two cells
are regarded as well-separated if their
distance is more than h, where h is
the cell size in that level. Otherwise,
two cells will be viewed as neighbors.
One cell in the quad tree will have at
most 8 neighbors while cell in the oc-
tree will have 26 neighbors at most.
As in Figure 3, if we take the green
cell as an example, cells colored in red
are its neighbors. Furthermore, we in-

troduce the idea of interaction cells colored in blue, which are well-
separated from the green cell, but not that far. The formal definition
can be stated as follows. The interaction cells I(·) are a collection
of cells within the same tree level as green cell g, whose parent cells
P(·) (in the tree structure) are neighborsN (·), of the g’s parent cell
but they themselves are not neighbors of g:

I(g) = {a : P(a) ∈ N (P(g)) ∧ a /∈ N (g)} .

In a quad tree, one cell will have at most 27 interaction cells while
189 in an octree at most. After the spatial division tree is con-
structed, FMM will perform the summation in three steps:

• In the first step, we build up a far field approximation for each
cell in each tree level, similar to the evaluation of the center
of mass in the above toy example. However, in order to con-
trol the accuracy, FMM uses a multipole expansion which can
be realized in many different ways, such as a spherical har-
monic expansion, layer potential or the RBF-style approach
as we propose (see paper′s Section 5). The multipole expan-
sion computation starts from the tree leaf cells up to the tree
root. For each leaf cell, we apply a multipole expansion or a
particle-to-multipole step, as shown in Figure 4. As described
in Section 5 of the paper, we assign two spheres for each cell
where we either place the kernel function or evaluate the po-
tential value. This idea is similar to [Ying et al. 2004], who
classified the spheres as a representing sphere or a checking
sphere, depending on how they are used. In Figure 4, the red
sphere is representing sphere and the blue sphere is check-
ing sphere. We place k particles uniformly on each sphere
and first evaluate the gravity potential at samples on the blue
sphere generated by the 3 massive particles in the cell:

φp2mi = P1ρi,

Figure 5: multipole to multipole

where ρi is the collection of particles’ mass. Then we com-
pute the multipole expansion coefficient σ evaluated on the
red representing sphere,

σi = P−1
2 φp2mi .

After computing the multipole expansion in the leaf cell level,
we pop up the multipole expansion coefficients to their upper
level; this process is called multipole-to-multipole translation,
as shown in Figure 5. Similar to the particle-to-multipole step,
we use the blue sphere as a checking sphere and the red sphere
as a representing sphere. We first evaluate the gravity poten-
tial on the parent cell’s checking sphere generated by all its
children cells’ representing spheres,

φm2m
i = M1σij + M3σik , P(j) = P(k) = i.

Then multipole expansion coefficient of the parent cell can be
computed as

σi = M−1
2 φm2m

i , M2 = M4

We follow the above description and construct the multipole
to multipole translation level by level.

• In the second step, we compute the influence between cells
falling in the same interaction list for each tree level, which is
called multipole to local expansion as shown in Figure 6. For
each cell at any tree level, we aggregate the influence from all
its interaction cells,

φm2l
i = T1σj + T3σk + · · · .

Then the local expansion coefficient τ , which represents far
field influence, can be computed as

τ i = T−1
2 φm2l

i , T2 = T4.

Figure 6: multipole to local

Figure 7: local to local

Similarly to multipole to multipole translation, we apply this
step to each level.

• After the second step, we have the influence from interaction
cells at each level. In the third step, we pop down such influ-
ence from the tree root to the tree leaf level by level as shown
in Figure 7. Similarly, we start from evaluating the gravity
potential from the parent cell’s representing sphere onto its
childrens’ checking sphere,

φl2lij = L1τ i

φl2lik = L3τ i.

The popped down local expansion coefficients can be com-
puted for each children cell as

τ ij = L−1
2 φl2lij

τ ik = L−1
4 φl2lik

L2 = L4.

The new coefficients will be added to the children’s local ex-
pansion coefficients computed in the second step and popped
down to the next level as above. Once the local expansion is
popped down to the leaf level, we apply the local expansion
to particles within each leaf cell as shown in Figure 8,

φl2pi = Q1τ i.

Notice φl2pi already contains influence from cells well sepa-
rated from cell i but the influence from neighbor cells and cell
i itself is still not accounted for, so we finally add the near field

Figure 8: local to particle Figure 9: near field summation

contribution by brute froce computation for each leaf cell as
shown in Figure 9.

We release an implementation of the above kernel independent
FMM at http://www.cs.ubc.ca/˜mike323/fsm.html.

3 Discussion

In this section, we provide a brief discussion on potential extension
of both boundary element method and fast multipole method.

3.1 On BEM

To evolve fracture inside the material, various criteria can be ap-
plied as mentioned in Section 1 and 6.2 of the paper. In the paper,
we use the Rankine condition which requires the principal eigen-
value of the stress tensor. Once we obtain ρ by solving Equation 9,
one can evaluate stress information analytically at any point inside
the material by incorporating Equations 6 and 7. The derivation is
similar to the previous section, so we are not going to restate it here.
Instead, we give a brief description on how the indirect BEM can be
combined with another fracture criteria, Griffith energy minimiza-
tion, which is used in [Hegemann et al. 2013]. We show how to
analytically compute energy gradient which is the essential build-
ing block in shape optimization. We use the following definition
for elastic energy measure,

ψ = σ : ε.

Since we use a linearized strain and linear material constitution law,
the energy will be a function of deformation gradient F, by which
we mean there will be quadratic terms like

F : F, tr(F)I : F

and a linear term F : I. Thus when we compute ∇ψ, we need to
evaluate

∇(F : F), ∇(tr(F)I : F), ∇(F : I)

Notice the second quadratic term can be rewritten as,

tr(F)I : F = tr(F)2.

Its gradient turns out to be

∇(tr(F)I : F) = 2tr(F)∇tr(F) = 2tr(F)∇(F : I).

As the derivation of ∇(F : I) is similar to ∇(F : F), we will just
focus on the latter case,

∇(F : F) =

∂(F:F)
∂x

∂(F:F)
∂y

∂(F:F)
∂z

∂(F : F)

∂χ
= 2

∂F
∂χ

: F = 2tr[
∂F
∂χ

FT].

where χ represents a coordinate parameter. As we have the analyt-
ical representation of F based on layer potential, we can also com-
pute ∂F

∂χ
with little additional effort. Thus computing the energy

gradient is trivial.

Interestingly, it is also possible to compute the gradient of F’s sin-
gular values, which might be related to work on stress-aware fabri-
cation, such as [Zhou et al. 2013]. By applying the gradient to the

SVD decomposition of F, we have

F = UΣVT

∂F
∂χ

=
∂U
∂χ

ΣVT + U∂Σ
∂χ

VT + UΣ
∂VT

∂χ

UT ∂F
∂χ

V = UT ∂U
∂χ︸ ︷︷ ︸

ω̂U

Σ +
∂Σ

∂χ
+ Σ

∂VT

∂χ
V︸ ︷︷ ︸

ω̂VT

,

where both ω̂U and ω̂VT are skew-symmetric matrices. Since diag-
onal entries of matrix product between skew-symmetric matrix and
diagonal matrix will be zero, we have

∂σi
∂χ

= uTi
∂F
∂χ

vi.

3.2 On FMM

Figure 10: particles
with depth-6 quad tree

As described in the previous sec-
tion, FMM provides an asymptoti-
cally linear complexity approach for
matrix-vector multiplication, Ax = b,
based on n body fast summation, es-
pecially when the summation kernel
is non-oscillatory and decaying. Be-
low we provide a brief description of
FMM from an algebraic point of view,
which relies on matrix low rank ap-
proximations.

Given n particles as well as spatial di-
vision tree structure as shown in Fig-

ure 10, we can reorder the particles based on Morton order such
that particles that are close in the tree structure will stay close in the
algebraic order. We adopt the definition of neighbor cell, interac-
tion cell and well-separated cell shown in Figure 3. In particular,
we regard interaction between particles lying in neighbor cells as
full rank and those lying in well-separated cells as low rank. We
show the sparse full rank (colored in black) patterns of Figure 10
for tree levels from 2 to 6 in Figure 12. The low rank setting is

Figure 11: rank deficient interaction between well-separated clus-
ters

http://www.cs.ubc.ca/~mike323/fsm.html

(a) level 2 (b) level 3 (c) level 4 (d) level 5 (e) level 6

Figure 12: full rank pattern (colored in black) of Figure 10 from tree level 2 to 6

due to the usage of non-oscillatory decaying kernel function. If
we take two clusters of particles and build their interaction matrix
using such kind of kernel function, we will see such low rank prop-
erty by plotting the matrix’s singular value distribution as shown
in Figure 11. If a matrix is rank deficient, the best known rank k
approximation is by truncated SVD. Such approaches minimize the
error between the original matrix and the approximation in either
L2 or Frobenius norm. However, obtaining such optimal approx-
imation not only requires O(n2) matrix construction but also the
time consuming SVD decomposition. If we take a look at how
FMM works again, the three step algorithm actually builds up a hi-
erarchical low rank approximation tree structure for well-separated
particles. Such an algebraic tree structure is similar to hierarchical
semi-separable (HSS) or hierarchical block separable (HBS) matrix
tree [Corona et al. 2015]. Nevertheless, we view neighbor cell in-
teractions as full rank and want to handle them directly instead of
making approximations as HSS or HBS approaches.

To see how FMM can be related to such low rank approximation,
let’s take two leaf cells of particles as an example. Given the mass
ρs of one cell Cs and its interaction matrix A with cell Ce, we can
evaluate the potential φe at particles in Ce by matrix-vector mul-
tiplication, Aρs = φe. If these two cells are well-separated, the
interaction can be instead represented as follows based on what we
have described in Section 2.1:

σs = P−1
2 φp2ms = P−1

2 P1ρs
(particle to multipole)

⇓
σP(s) = M−1

2 φm2m
P(s) = M−1

2 M1σs

(multipole to multipole)

⇓
...
⇓

τP◦···◦P(e) =T−1
2 φm2l

P◦···◦P(e) = T−1
2 T1σP◦···◦P(s)

(multipole to local)
⇓
...
⇓

τ e = L−1
2 φl2le = L−1

2 L1τP(e)

(local to local)
⇓

φl2pe = Q1τ e

(local to particle).

If we collect the above expansions together, we have the following
relation,

Ã = Q1L−1
2︸ ︷︷ ︸

L∗
1

L1·︸︷︷︸
L∗
2

· · · ·T−1
2︸︷︷︸

L∗
k

T1︸︷︷︸
T∗
1

· · ·M−1
2 M1︸ ︷︷ ︸
M∗

2

P−1
2 P1︸ ︷︷ ︸
M∗

1

φe ≈ φ
l2p
e = Ãρs, A ≈ Ã,

(11)

where k is the depth of the tree structure and Ã is a low rank ap-
proximation as shown in Figure 13. If we extend this simple two

Figure 13: low rank approximation of A represented in FMM

well-separated clusters interaction example to general n body prob-
lem where full rank interaction and hierarchical structure need to be
taken care of, we obtain a hierarchical matrix algebraic expansion
similar to the HSS or HBS structure as shown in Figure 14.

Figure 14: algebraic expansion of FMM

In the above figure, F∗i stands for full rank block matrix which is
composed of ith level neighbor cells interactions. More specifi-
cally, F∗1’s matrix blocks represent brute force near field interaction
in the bottom level of FMM tree while F∗i+1’s (i≥ 1) matrix blocks
are (k−i+1)th level T∗1 matrix as shown in Equation 11. By view-
ing FMM in this way, we can also observe linear time matrix-vector
multiplication from an algebraic aspect.

punch cube twist cube compress cube

stretch cut punch torus push model

Table 1: Elastic deformation deformation solved by indirect boundary integral formulation. Color on the surface represents elastic energy.

4 Numerical Results

Here we provide some numerical results computed using the above
methods. In Table 1, we apply various surface tractions on different
surface models and solve for displacement and elastic energy on the
surface only, whereas in Table 2, we solve for displacement on the
surface as well as elastic energy inside the material.

References

BARNES, J., AND HUT, P. 1986. A hierarchical o(nlogn) force-
calculation algorithm. Nature 324, 446–449.

CORONA, E., MARTINSSON, P.-G., AND ZORIN, D. 2015. An
direct solver for integral equations on the plane. Applied and
Computational Harmonic Analysis 38, 284 – 317.

GREENGARD, L., AND ROKHLIN, V. 1987. A fast algorithm for
particle simulations. J. Comput. Phys. 73, 2 (Dec.), 325–348.

HEGEMANN, J., JIANG, C., SCHROEDER, C., AND TERAN, J. M.
2013. A level set method for ductile fracture. In Proc. ACM
SIGGRAPH/Eurographics Symp. Comp. Anim., 193–201.

MESSNER, M. 2008. Time-dependent body forces within a bound-
ary element formulation. PhD thesis, Technische Universität
Graz.

YING, L., BIROS, G., AND ZORIN, D. 2004. A kernel-
independent adaptive fast multipole algorithm in two and three
dimensions. J. Comput. Phys. 196, 2 (May), 591–626.

ZHOU, Q., PANETTA, J., AND ZORIN, D. 2013. Worst-case struc-
tural analysis. ACM Trans. Graph., 137:1–137:12.

original mesh

deformed mesh

elastic energy

y slice

x slice

z slice

Table 2: Elastic deformation solved by indirect boundary integral formulation. first row: applying point force load on the top face; second
row: twisting the cube; third row: stretching the object.

