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Figure 1. Given small sets of images (e.g., 4 to 8), LIRM progressively reconstructs view-dependent radiance fields, geometry and material

reflectance in less than a second through a feed-forward transformer, enabling realistic rendering under novel lighting conditions.

Abstract

We present Large Inverse Rendering Model (LIRM), a trans-

former architecture that jointly reconstructs high-quality

shape, materials, and radiance fields with view-dependent

effects in less than a second. Our model builds upon the

recent Large Reconstruction Models (LRMs) that achieve

state-of-the-art sparse-view reconstruction quality. How-

ever, existing LRMs struggle to reconstruct unseen parts

accurately and cannot recover glossy appearance or gener-

ate relightable 3D contents that can be consumed by stan-

dard Graphics engines. To address these limitations, we

make three key technical contributions to build a more prac-

tical multi-view 3D reconstruction framework. First, we

introduce an update model that allows us to progressively

add more input views to improve our reconstruction. Sec-

ond, we propose a hexa-plane neural SDF representation

to better recover detailed textures, geometry and material

parameters. Third, we develop a novel neural directional-

embedding mechanism to handle view-dependent effects.

Trained on a large-scale shape and material dataset with a

tailored coarse-to-fine training scheme, our model achieves

compelling results. It compares favorably to optimization-

based dense-view inverse rendering methods in terms of ge-

ometry and relighting accuracy, while requiring only a frac-

tion of the inference time.

1. Introduction

High-quality reconstruction of shape and materials from

multi-view images, often referred to as inverse rendering,

is a fundamental challenge in computer vision research. It

has numerous important industrial applications in gaming,

film, architecture, robotics, and AR/VR. Recent advance-

ments in neural 3D representations [32, 53, 59, 60] and gen-

erative modeling [26, 70] have led to the development of

more robust and efficient inverse rendering methods. These

advancements help democratize 3D content creation. Mod-

ern inverse rendering methods [5–7, 19, 24, 29, 30, 46,

61, 68, 72, 91, 97, 98, 102–104] can jointly reconstruct

shape, materials and even lighting from multiple images

captured in arbitrary natural illuminations with reasonable

accuracy. This is often achieved by minimizing a render-

ing loss through a carefully designed optimization process.

This is a great step forward from traditional measurement-

based methods [14, 56, 57] that require specialized de-

vices and highly constrained environments. However, these

optimization-based methods still suffer from long recon-

struction time and require densely captured images. They

also lack inductive bias to disambiguate lighting, materials

and geometry, which often causes shadows and highlights

to be baked into reconstructed materials.

We present Large Inverse Rendering Model (LIRM), the

first feed-forward transformer that takes less than 1 sec-

ond to jointly reconstruct high-quality shape, materials,

and view-dependent radiance fields of a full 3D object. It

can achieve this from as few as 3 to 6 posed images cap-

tured in arbitrary, unconstrained environments. Without in-

creasing GPU memory consumption, LIRM can progres-

sively refine its prediction results by incorporating addi-

tional input views, allowing for the addition of missing tex-

tures and specular highlights in previously unseen regions

or from novel view angles. Inverse rendering from sparse

inputs is an extremely ill-posed problem. State-of-the-art
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Figure 2. The network architecture of LIRM. The inputs are masked images Im, background images to provide more lighting information

I
m
bg and Plücker rays (v,v × o)m that encodes camera intrinsics and extrinsics. These 3 images are concatenated together and turned

into tokens through a simple linear layer. These tokens are sent to a self-attention transformer to update hexa-plane tokens (T m
k(+,−),

k ∈ {xy, xz, yz}) and NDE tokens (Em). We decode the 2 kinds of tokens into hexa-plane representation and NDE panoramas through

linear layers, which can be used to render view dependent radiance fields and BRDF parameters through neural volume rendering.

optimization-based methods often fail to fully decompose

materials, lighting, and geometry with dense observations.

Our work draws inspiration from recent Large Reconstruc-

tion Models (LRM) [27], which are trained on large-scale

3D datasets [15] and have achieved unprecedented high-

quality sparse-view reconstruction results.

However, several drawbacks hinder their practical use in

image-based 3D content creation frameworks. First, exist-

ing LRMs [25, 35, 75, 79, 84, 88, 89, 99] output radiance

fields without any view-dependent effects, which fails to

correctly model glossy appearances. Secondly, they face

difficulties in reconstructing unseen parts of objects. Unfor-

tunately, naively adding more input views poses challenges

due to GPU memory limitations and model capacity con-

straints during both training and inference. More impor-

tantly, they lack the ability to fully decompose geometry,

materials, and lighting, which prevents them from generat-

ing relightable 3D contents that can be consumed by stan-

dard graphic pipelines.

In this work, we present a more practical model for ef-

ficient and robust reconstruction of high-quality relightable

3D contents. It fully supports downstream applications such

as rendering, simulation and editing using standard graph-

ics pipelines. Our approach introduces several important

novel technical components. Firstly, we develop a novel

network module that enables progressive updates of inverse

rendering results. This is achieved by comparing predicted

3D tokens with new input image tokens using self-attention

modules. As a result, our model can refine its predictions as

more input views are added without increasing GPU mem-

ory consumption. Secondly, we propose a novel hexa-plane

neural SDF representation. Our hexa-plane representation

better reconstructs texture details and memorizes prior re-

construction results without significantly increasing com-

putational cost. Thirdly, we adopt neural directional en-

coding [85] into our feed-forward transformer architecture

to recover view-dependent effects, which is essential for

creating photorealistic appearances. Fourthly, we build a

new large-scale 3D dataset with ground-truth materials and

realistic appearances. This dataset carefully mimics real-

world capturing settings to minimize domain gaps. We also

made several improvements to further enhance reconstruc-

tion quality, including a higher-capacity model and an elab-

orate coarse-to-fine training paradigm that balances compu-

tational cost and quality. Experiments show that our model

achieves competitive reconstruction results on real object

benchmarks [34, 76], and even outperforms several recent

dense-view optimization-based methods in terms of geom-

etry and relighting accuracy.

2. Related Works

Inverse rendering Built on recent advancements in neu-

ral 3D representations [32, 53, 59, 60] and differentiable

rendering [21, 37, 50, 96], latest optimization-based in-

vserse rendering methods [5–7, 19, 24, 29, 30, 46, 61, 68,

72, 91, 97, 98, 102–104] can reconstruct geometry, mate-

rials, and lighting from images densely captured in natu-

ral and unknown illumination. This is achieved by mini-

mizing a rendering loss, a process takes from several min-

utes to hours. However, due to its ill-posed nature and the

lack of effective inductive priors, even state-of-the-art in-

verse rendering methods are prone to generate artifacts un-

der challenging scenarios, such as the presence of shadows,

strong specular highlights, and interreflections. Various pri-

ors have been designed to improve inverse rendering accu-

racy. Earlier methods [3, 4, 52] rely on hand-crafted reg-

ularizations. Recent learning-based methods increasingly

rely on deep priors learned from large-scale real or syn-

thetic datasets to solve challenging inverse rendering prob-

lems. These include single image intrinsic decomposition

[9, 39, 58], SVBRDF estimation [17, 38, 40, 41], lighting

estimation [22, 23, 42, 43, 71, 82], and relighting [44, 90].

However, none of the above methods can reconstruct fully

relightable 3D objects from arbitrarily posed sparse inputs

in a feed-forward manner.

506



Sparse-view reconstruction Numerous attempts have

been made to inject regularization [28, 33, 62, 66] or learned

priors [11, 31, 54, 81, 94] into sparse-view neural radiance

field reconstruction. However, these methods generally rely

on sophisticated optimization paradigms with various reg-

ularization terms, which can take several minutes or even

hours to reconstruct a 3D object with quality much lower

than dense-view reconstruction methods.

Recent research has facilitated the use of diffusion pri-

ors [26, 70] learned from billions of 2D images to sig-

nificantly improve sparse-view reconstruction. These pri-

ors are usually applied either through score distillation

sampling, which is usually time-consuming and unstable,

[18, 47, 64, 78, 80, 83, 86] or by fine-tuning pre-trained dif-

fusion models on 3D object datasets to generate multi-view

consistent images directly [48, 49, 51, 55, 65, 67, 74, 87].

While these methods demonstrate an impressive ability

to hallucinate visually appealing appearances, the recon-

structed unseen parts do not always align with real objects.

They also lack the knowledge to faithfully recover material

reflectance. In contrast, LIRM offers a more explicit ap-

proach to controlling the reconstruction process by adding

additional input views. It achieves inverse rendering accu-

racy comparable to state-of-the-art methods optimization-

baesd, making it a highly effective solution.

Large reconstruction models LRM [27] and its variants

[8, 25, 35, 73, 75, 79, 84, 88, 89, 99] demonstrate trans-

former architecture’s exceptional capability for sparse re-

construction. Trained on large-scale 3D datasets [15, 16]

and multi-view image datasets [95], they can reconstruct re-

alistic geometry and texture details from very few or even a

single image in a feed-forward manner within a second.

Most LRM variants focus on reconstructing radiance

fields, which are incompatible with standard graphics

pipeline for editing and visualization. While MeshLRM

[84] and InstantMesh [88] extract mesh and texture maps, it

remains a challenging problem to reconstruct relightable 3D

objects with realistic specular highlights. Two concurrent

works aim to solve this problem. RelitLRM [101] repur-

poses the LRM transformer as a neural renderer to directly

predict view-dependent appearance under a new lighting

condition. However, the output 3D Gaussian points have

limitations, including a lack of support for near-field effects

like area lighting and interreflections, as well as material

and geometry editing applications. Similar to our method,

SF3D [8] and AssetGen[69] target fully decomposing ma-

terials, geometry and lighting. Compared to concurrent

works, LIRM features a simpler network design with larger

capacity, supporting multi-view progressive reconstruction

and achieving lower relighting errors on a popular bench-

mark [34].
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Figure 3. Visualization of the initial and updated reconstruction.

Our simple update strategy enables our model to memorize prior

reconstruction while progressively improve results.

3. Method

Our LIRM network architecture is demonstrated in Fig. 2.

We start by introducing notations and preliminary knowl-

edge of LRM. Then, we present our update module for pro-

gressive reconstruction and an improved neural SDF repre-

sentation for more detailed shape and material reconstruc-

tion. Next, we explain how we handle view-dependent ra-

diance fields. Finally, we summarize our tailored coarse-to-

fine training scheme and all the implementation details.

3.1. Preliminaries

LIRM transformer architecture is built on MeshLRM [84]

but with larger capacity. Compared to the original LRM

method [27], MeshLRM makes two major improvements in

its network design. First, it uses Plückers-rays representa-

tion instead of adaLN [63]. This enables better generaliza-

tion to diverse camera settings and allows for cropping im-

ages to focus on the object, which is crucial for real-world

applications with challenging camera settings (see Sec. 4).

Second, it removes the DinoViT [10] encoder, which is dif-

ficult to train and results in reduced texture detail, likely

due to its pre-training on semantic tasks. Instead, it uses a

simple linear layer to tokenize image patches. More specifi-

cally, let {I} be a set of non-overlapping 8×8 image patches

from multiple input views. Let {(v,v × o)} be the corre-

sponding Plücker representation, where v is the ray direc-

tion and o is the camera original point. The image tokens

are computed as

{I} = Linear({I, (v,v × o)}). (1)

MeshLRM adopts tri-plane as its 3D representation. Tri-

plane is first tokenized with learned positional encoding

507



Tri-plane reconstruction Hexa-plane reconstruction Ground-truth

Figure 4. Comparisons between our tri-plane and hexa-plane re-

construction. Here we show diffuse texture reconstruction results

without considering material reflection and view-dependent ef-

fects. Hexa-plane clearly recovers better texture details.

{Pk}, k ∈ {xy, xz, yz}. These tri-plane tokens together

with image tokens {I} are sent to a simple transformer ar-

chitecture that consists of a series of pre-LN self-attention

blocks. Both types of tokens are updated by every self-

attention block but we only keep the final output tri-plane

tokens,

{Tk}=Transformer({Pk}, {I}). (2)

The predicted tri-plane tokens are then decoded by a sim-

ple linear layer. Each token is decoded to an 8 × 8 non-

overlapping feature patch on the tri-plane,

{Tk} = Linear({Tk}). (3)

The decoded {Tk}, k ∈ {xy, xz, yz} is a standard tri-plane

3D representation, which can be used to render images ei-

ther through volume ray marching or differentiable raster-

ization. In MeshLRM [84], the whole transformer is pri-

marily trained with a rendering loss between rendered and

ground-truth images, with several regularization terms to

enforce geometry quality and training stability.

3.2. Update Module for Progressive Reconstruction

One unsolved challenge for existing LRMs is to reconstruct

unseen parts of objects. Several attempts have been made

to combine LRMs with multi-view diffusion models to hal-

lucinate unseen appearance [35, 88]. However, the hallu-

cinated appearance can not be guaranteed to align with the

real object. Therefore, we argue that a more explicit way to

control the reconstruction process is to enable users to in-

teractively select more input views according to the current

reconstruction result. Naively adding more images as inputs

to the transformer will significantly increase the number of

tokens, causing at least a linear increase of GPU memory

consumption and close to quadratic increase of computation

time, even with an advanced attention module [13]. On the

contrary, our LIRM aims to support progressively adding an

arbitrary number of images without increasing GPU mem-

ory consumption during both training and inference.

The key to achieve our goal is to feed the predicted tri-

plane tokens {Tk} back into the transformer and update

these tokens through self-attention with new input image

tokens {I}. In this process, the learnable positional en-

coding {Pk} are kept unchanged. We denote {T m−1
k } as

the (m − 1)th set of output tri-plane tokens predicted by

the transformer. We compute the mth input tri-plane tokens

{Pm
k } by concatenating the (m − 1)th output tokens with

the learned positional encoding {Pk} and pass it through a

two-layer MLP. Eq. (1) and (2) are re-written as:

{Im} = Linear({Im, Imbg, (v,v × o)m}), (4)

{Pm
k } = MLPfuse(Concat({T m−1

k }, {Pk})), (5)

{T m
k } = Transformer({Pm

k }, {Im}), (6)

where {T 0
k } = {0}. Since LIRM targets decomposing ma-

terials and lighting, we add images with background Ibg as

an extra input to help the network figure out the lighting

condition of surrounding environments. We observe that

this simple modification is sufficient to enable us to effec-

tively update the tri-plane prediction with new input images

without ”forgetting” the prior observations. Fig. 3 shows an

example of our reconstruction results where the first set of 4

input images only cover the front side of the object and the

second set of 4 images only cover the back side. With the

first set of 4 input images, our LIRM only reconstructs the

front side of the object accurately. After taking the second

set of inputs, our network updates the tri-plane prediction to

obtain high-quality reconstruction of the full 3D object.

3.3. Hexaplane for Detailed Shape and Materials

While tri-plane-based 3D representation can achieve highly

detailed appearance and geometry in most scenarios, we ob-

serve that it struggles when both sides of an object contain

complex but different textures, as shown in Fig. 4. This lim-

itation arises from using a single feature plane to represent

both sides of textures in tri-plane representations. There-

fore, we adopt a hexa-plane representation where we use

6 planes to divide the bounding box into 8 volumes, each

with its own tri-plane. This representation utilizes the prior

that the target object is likely to be roughly convex and lo-

cated in the center of the 3D volume. K-plane [20] also

uses multiple planes to represent 3D objects and scenes, but

its primary goal is to model the temporal axis for dynamic

scene reconstruction.

We now present our neural SDF representation based

on hexa-plane for joint shape and materials reconstruction.

We denote our hexa-plane as {Tk(+,−)}. The correspond-

ing output tokens and positional encoding are defined as

{Tk(+,−)} and {Pk(+,−)}, which can be replaced into Eq.

(3), (5) and (6). To render images and material maps from

our hexa-plane representation, we use the SDF-based vol-

ume ray marching method proposed in [92] for its simplic-

ity and its ability to obtain high-quality geometry. We also

considered [77] but it causes much higher computational

cost, which will be discussed in the supplementary mate-
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rial. MeshLRM [84] and InstantMesh [88] use differen-

tiable marching cube to reconstruct geometry and textures.

However, that requires pre-training and special regulariza-

tion terms to overcome training stability issues. Our train-

ing pipeline is much simpler while still showing promising

geometry reconstruction and view synthesis results, as will

be discussed in Sec. 4. Formally, let x = (x, y, z) be a 3D

point. We can query feature fxy(x) from plane {Txy(+,−)}
following,

fxy(x) =

{

Bilinear(Txy+;x, y) z ≥ 0

Bilinear(Txy−;x, y) z < 0.
(7)

fxz and fyz can be queried similarly. fxy , fxz and fyz are

concatenated as feature vector f , which is sent to small

MLPs with 2 to 3 hidden layers and 32 hidden dimensions

for decoding, following [84]. We use separate MLPs to

predict SDF value, RGB color (c), normal (n), albedo (a),

metallic (m) and roughness (r), written as,

s = MLPs(f) + sbias(x) (8)

σ =

{

1
2 exp(−

s

β
) s ≥ 0

1− 1
2 exp(

s

β
) s < 0

(9)

z = sigmoid(MLPz(f)), z ∈ {a.c, r,m} (10)

n = normalize(MLPn(f)), (11)

where σ is density and β is the standard deviation that con-

trols sharpness of the reconstructed surface. We choose to

gradually decrease β as will be discussed in Sec. 3.5. Mean-

while, sbias is a prior that we find important to ensure fast

convergence of the training loss. We set

sbias(x) = ||x|| − 0.1R, (12)

where R is the radius of the bounding sphere.

Fig. 4 compares our hexa-plane and tri-plane reconstruc-

tion results. We reduced the number of tokens per-plane

(from 64× 64 to 48× 48) so that both representations have

similar computational cost. We can clearly see that hexa-

plane recovers much better texture details, while tri-plane

causes texture patterns to “leak” from one side to another,

indicating a capacity limitation of tri-plane.

3.4. Viewdependent Radiance Fields

View-dependent effect is important for modeling realis-

tic appearance as glossy materials and specular highlights

are commonly seen in daily objects. Moreover, neglect-

ing view-dependent effects can negatively impact geometry

quality, as the model will learn to create concave geometry

to fake view-dependent appearance, as shown in [99]. It is

challenging to recover view-dependent radiance fields from

sparse observations, especially when the 3D object is highly

glossy. This requires a holistic understanding of not only

One of 

input images

Diffuse texture Spherical harmonics

Neural encoding, N=1 Neural encoding, N=4 Ground-truth

Figure 5. Comparisons of different strategies to model view-

dependent effect in a feed-forward network module.

geometry and materials but also lighting and the surround-

ing environment. Although the primary focus of LIRM is on

reconstructing materials and geometry, we also investigate

methods for reconstructing view-dependent radiance fields.

Simply adding the view direction as an extra input to

the MLPc cannot work because of its limited capacity. We

therefore explore two solutions. We first consider predict-

ing three orders of spherical harmonic coefficients for ev-

ery query point, following [32] and [93]. However, this

representation cannot handle high frequency angular sig-

nals, causing blurry specular highlights. To further improve

the quality, we adopt the recent neural directional encod-

ing (NDE) method [85] with modifications to make it com-

patible with a feed-forward transformer. NDE transfers the

concept of feature volume into angular domain. It uses the

reflection direction to query directional feature from a fea-

ture cubemap to model high frequency details in the angular

domain. However, this feature cubemap alone cannot model

near-field reflections, which makes a large impact when the

target object is not fully convex. Wu et al. [85] solve this

problem by computing second bounce features, which is too

expensive for training a feed-forward model. We solve the

problem by predicting multiple NDE panoramas and let the

model learn which panorama to query feature from. We pre-

dict those NDE panoramas progressively through our trans-

former architecture. Let {D} be the learnable positional

encoding for the NDE panorama and {Em−1} be the out-

put NDE panorama tokens from (m− 1)th update. We fuse

them together similar to Eq. (5) and send them to our self-

attention transformer and decode the output tokens with a

linear layer similar to Eq. (3):

{Dm}=MLPfuse(Concat({Em−1}, {D})), (13)

{Em}, {T m
k }=Transformer({Pm

k }, {Dm}, {Im}), (14)

{Em
ρ }=Linear({Em}) (15)

where ρ ∈ [1, N ] is the index of NDE panoramas and N is

the total number of NDE panoramas we use to approximate
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occlusion and near-field reflections.

To utilize these NDE panoramas for rendering, we add a

small MLP to predict NDE panorama index ρ. Let v be the

pixel ray direction and l be the reflection direction. RGB

color c at a 3D point x can be written as:

n = normalize(MLPn(f)), (16)

l = −2(v · n)n+ v (17)

φ, θ = arctan2(l[0], l[1]), arccos(l[2]) (18)

ρ = sigmoid(MLPρ(f)) (19)

fd = Trilinear({Em
ρ }Nρ=1; ρ, θ, φ) (20)

c = MLPc(Concat(f , fd)) (21)

In Fig. 5, we compare the representation power of spher-

ical harmonics and neural directional encoding in a feed-

forward setting by overfitting LIRM to a single 3D object.

For neural directional encoding experiments, we test N = 1
and N = 4. Spherical harmonics solution misses sharp

specular highlights. NDE solution fails at concave regions

when N = 1 because we only model a single bounce. On

the contrary, multiple panoramas (N = 4) achieves the low-

est reconstruction error and reconstructs accurate specular

highlights for the whole object.

3.5. Training Scheme

Coarse-to-fine training and acceleration We adopt a

coarse-to-fine training scheme to ensure fast convergence

and reduce computational cost. In the first stage, we use

a larger batch size and learning rate, but smaller resolu-

tions and fewer samples per ray to obtain a coarse recon-

struction result. In the second and third stages, we fine-

tune the model by decreasing learning rates and batch sizes,

while increasing resolutions and samples per ray to refine

reconstruction details. We also gradually reduce the stan-

dard deviation β by increasing 1
β

following a linear sched-

ule. Moreover, we increase the number of tokens for our tri-

plane and hexa-plane representations compared to the prior

state-of-the-art [84], which we rise from 32 × 32 × 3 to

64× 64× 3 and 48× 48× 6 respectively. This makes train-

ing significantly slower at the third stage. Therefore, we

incorporate occupancy grid acceleration from NerfAcc [36]

into our differentiable renderer. Our final output plane reso-

lutions are 512× 512 and 384× 384. For NDE panoramas,

we add another 32× 32 tokens into our transfomer and de-

code them into 4 feature panoramas of resolution 128×128.

During training, we provide the update model with 2 sets

of 3-6 images per iteration in the first stage, and 3 sets of

images per iteration in the second and third stages. More

details are in the supplementary material.

Loss functions LIRM is trained with image losses com-

puted from direct supervision of ground-truth 2D RGB im-

age, normal and material maps. We use L2 loss for all ren-

dered 2D maps and add LPIPS [100] loss for RGB image

Table 1. Quantitative comparisons for view synthesis under uni-

form lighting on the GSO dataset

Radiance fields PSNR (↑) SSIM (↑) LPIPS (↓)

MeshLRM [84] 28.13 0.923 0.093

GS-LRM [99] 30.52 0.952 0.050

LIRM-hexa 1st 29.27 0.941 0.061
LIRM-hexa 2nd 30.48 0.947 0.056

LIRM-hexa 3rd 30.65 0.949 0.054

LIRM-hexa 4th 30.56 0.948 0.054

LIRM-tri 4th 29.61 0.941 0.063

Mesh PSNR (↑) SSIM (↑) LPIPS (↓)

MeshLRM [84] 27.93 0.925 0.081

LIRM-hexa 4th 29.22 0.942 0.059

Table 2. Quantitative comparisons for view synthesis under uni-

form lighting on the ABO dataset.

Radiance fields PSNR (↑) SSIM (↑) LPIPS (↓)

MeshLRM [84] 28.31 0.906 0.108

GS-LRM [99] 29.59 0.944 0.051

LIRM-hexa 1st 32.69 0.957 0.056

LIRM-hexa 2nd 33.08 0.959 0.050

LIRM-hexa 3rd 32.98 0.958 0.055

LIRM-hexa 4th 32.83 0.958 0.054

LIRM-tri 4th 32.58 0.956 0.055

Mesh PSNR (↑) SSIM (↑) LPIPS

LIRM-hexa 4th 29.79 0.951 0.069

and albedo, which we find essential to recover texture de-

tails. We also find that an L2 loss on numerical normal

computed from SDF gradients can help improve geometry

accuracy. To compute the numerical normal, we perturb ev-

ery 3D point in axis-aligned directions (i.e., along the x, y,

and z axes) and then calculate the normalized gradients at

each point, which serve as the numerical normal. We set

the size of perturbation to be twice the size of a voxel in

hexa-plane, following [45]. However, this would require

3 times more feature query to compute numerical normal

loss, which is expensive. We therefore only use it for the

third stage of training, which we find to be sufficient.

More implementation details LIRM’s transformer con-

sists of 24 self-attention blocks, each with 16 heads and a

feature dimension of 1024, where each head has a separate

feature dimension of 64. Since LIRM’s hexa-plane output

both 2D images and material parameters maps, we increase

the number of feature channels of {Tk} from 32 to 64 com-

pared to MeshLRM [84]. We use AdamW optimizer with

(β1, β2) = (0.9, 0.95). The whole training takes around 2

weeks on 64 H100 GPUs. The inference time for one step

is around 0.3 seconds on an A100 GPU.

4. Experiments

Training data We create a new dataset that carefully

mimics real capturing environments to reduce domain gaps.
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Table 3. Quantitative comparisons for view synthesis and inverse

rendering under environment lighting on the ABO dataset.

PSNR (↑) LPIPS (↓) CD (↓)

LIRM c a r m c a -

NDE 1st 29.01 32.34 23.20 27.28 0.064 0.070 0.123

NDE 2nd 29.70 32.82 23.30 28.16 0.060 0.067 0.122

NDE 3rd 29.82 32.85 23.36 28.29 0.060 0.067 0.121

NDE 4th 29.92 32.76 23.32 28.34 0.060 0.067 0.121

Diff 4th 29.50 32.95 23.05 28.14 0.061 0.067 0.121

Table 4. Quantitative comparisons for view synthesis and inverse

rendering under environment lighting on the DTC dataset.

PSNR (↑) LPIPS (↓) CD (↓)

LIRM c a r m c a -

NDE 1st 27..59 30.19 18.71 26.97 0.092 0.096 0.119

NDE 2nd 28.97 31.23 18.79 28.85 0.082 0.088 0.118

NDE 3rd 29.23 31.50 18.88 29.24 0.081 0.086 0.117

NDE 4th 29.35 31.54 18.84 29.33 0.080 0.085 0.117

Diff 4th 28.98 31.60 18.44 29.12 0.081 0.086 0.117

LIRM-Diff LIRM-NDE Ground-truth

Figure 6. LIRM-NDE can generalize to real images to recover

view-dependent radiance fields.

We select 600k 3D objects from the Shutterstock dataset

[1] with GT PBR materials. To render these 3D objects, we

use 2.5K HDR environments collected from Laval Dataset

and Polyhaven. Each HDR environment map is randomly

rotated before rendering. We also randomly perturb the ex-

posure time, white balance, camera intrinsics, and material

parameters for data augmentation. Our final training set in-

cludes 38 million images with GT material maps.

View synthesis under uniform lighting We first train

and test the LIRM model on datasets rendered with uniform

lighting. This enables us to validate the effectiveness of our

update module and hexa-plane representation. It also allows

us to directly compare with state-of-the-art LRM variants.

We tested on GSO and ABO datasets. Quantitative com-

parisons are summarized in Tab. 1 and Tab. 2. Qualita-

tive results can be seen in Fig. 3 and Fig. 4. We tested 4

stages of update. The input and output views are selected

following [84]. We select 16 input views and 12 output

views. For each stage, we randomly select 4 views from

16 input views. This is a more challenging setting com-

pared to [84] as it always uses canonical views as inputs.

Nevertheless, both LIRM tri-plane and LIRM hexa-plane

outperforms the prior stage-of-the-art volume-based LRM

method [84]. LIRM hexa-plane even outperforms the base-

line with the first 4 input views, thanks to our larger number

of plane tokens and the novel representation. We observe

that our update model is the most effective within the first 3

sets of input views. LIRM hexa-plane achieves lower error

compared to LIRM tri-plane but the gap is much smaller on

ABO datasets, possibly because it has simpler textures.

Inverse rendering and view synthesis under natural

lighting We first evaluate our LIRM on synthetic datasets.

We use ABO [12] and newly released DTC [2] datasets.

Both datasets contain 3D models with high-quality material

properties. We test two variants, LIRM-Diff only predict

diffuse texture and material parameters. LIRM-NDE also

predicts NDE panoramas to model view-dependent effects.

The view selection is the same as previous experiments.

Quantitative results are summarized in Tab. 3 and Tab. 4.

From quantitative results, we observe that LIRM-NDE con-

sistently achieve lower view synthesis errors compared to

LIRM-Diff, indicating that our NDE module can success-

fully model view-dependent effects. Geometry and material

quality of the 2 models are similar. Similarly, LIRM-Diff

and LIRM-NDE can improve reconstruction quality with

more inputs. Fig. 7 shows that our material prediction can

accurately match the ground-truth, even for spatially vary-

ing roughness values (first row), leading to highly realistic

object relighting results (last 2 columns).

We then test both two variants on a real dataset, Stanford-

ORB [34]. Without any fine-tuning, LIRM generalizes im-

pressively to real data. It achieves reconstruction quality on

par and even better than state-of-the-art optimization-based

methods, which takes dense views as inputs and several

hours to run. Even with one set of inputs, LIRM achieves

the second best relighting quality. With 3 sets of inputs, it

achieves the highest geometry reconstruction quality. Fig. 8

shows LIRM can better handle specular materials compared

to optimization-based methods. Fig. 6 shows that with real

inputs, LIRM can also effectively handle view-dependent

effects. We also compare to concurrent LRM-based inverse

rendering method [69], and show that LIRM outperforms

by a large margin both qualitatively and quantitatively.
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Table 5. Quantitative comparisons with methods on Stanford-ORB dataset [34] for relighting, view synthesis and geometry reconstruction.

We separate methods into predictive and optimization-based methods. We select 3 top optimization-based methods from the leaderboard.

Methods
Relighting View Synthesis Shape

PSNR-H (↑) PSNR-L (↑) SSIM (↑) LPIPS (↓) PSNR-H (↑) PSNR-L (↑) SSIM (↑) LPIPS (↓) CD (↓)

InvRender [103] 23.76 30.83 0.970 0.046 25.91 34.01 0.977 0.042 0.44

NVDiffrecMc [24] 24.43 31.60 0.972 0.036 28.03 36.40 0.982 0.028 0.51

Neural-PBIR [72] 26.01 33.26 0.979 0.023 28.82 36.80 0.986 0.019 0.43

MetaLRM [69] 21.46 28.00 0.956 0.045 19.93 26.20 0.956 0.042 -

LIRM-diff 1st 24.76 32.11 0.971 0.027 25.82 34.01 0.977 0.021 0.48

LIRM-diff 3rd 25.09 32.45 0.972 0.025 26.66 34.88 0.979 0.018 0.38

LIRM-NDE 1st 24.25 31.63 0.969 0.028 25.84 34.00 0.976 0.021 0.33

LIRM-NDE 3nd 24.60 32.05 0.971 0.025 27.03 35.26 0.979 0.018 0.31

One of input images Diffuse albedo Roughness Metallic Normal Relit under a new environment map

Figure 7. Inverse rendering results on DTC dataset. Material ground-truth are included in insets.

One of input images LIRM-BRDF LIRM-relighting MetaLRM InvRender NvdiffrecMC Neural-PBIR Ground-truth

Predictive methods Optimization-based methods

Figure 8. Comparisons with prior works on Stanford-ORB dataset.

5. Conclusion

We present LIRM, a Large Inverse Rendering Model that

rapidly reconstructs high-quality shape, materials, and radi-

ance fields with view-dependent effects from sparse inputs

in under one second. LIRM overcomes the limitations of

existing LRMs by introducing three key technical contri-

butions: an update model for progressive reconstruction, a

hexa-plane neural SDF representation for detailed texture

recovery, and a novel neural directional encoding mecha-

nism for view-dependent effects. Trained on a large-scale

dataset in a coarse-to-fine manner, LIRM delivers results

comparable to optimization-based methods, while signifi-

cantly reducing inference time.

Supplementary: We will include more qualitative results

and quantitative comparisons with a MeshLRM [84] base-

line and optimization-based methods. We will also add im-

plementation details, discuss limitations and advantages of

LIRM under more challenging settings.
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