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Fig. 1. Our pipeline processes a stream of monocular RGB images to reconstruct scenes with immediate feedback. Our method produces high-quality
photorealistic maps with detailed reconstruction across multiple levels. The middle image illustrates our reconstructed mesh, and the right image showcases
the rendered results of our reconstructed map, which captures high-quality details at both coarse and fine levels.

We propose an online 3D Gaussian-based dense mapping framework for
photorealistic details reconstruction from a monocular image stream. Our
approach addresses two key challenges in monocular online reconstruction:
distributing Gaussians without relying on depth maps and ensuring both
local and global consistency in the reconstructed maps. To achieve this, we
introduce two key modules: the Hierarchical Gaussian Management Module
for effective Gaussian distribution and the Global Consistency Optimization
Module for maintaining alignment and coherence at all scales. In addition,
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we present the Multi-level Occupancy Hash Voxels (MOHV), a structure that
regularizes Gaussians for capturing details across multiple levels of gran-
ularity. MOHV ensures accurate reconstruction of both fine and coarse
geometries and textures, preserving intricate details while maintaining over-
all structural integrity. Compared to state-of-the-art RGB-only and even
RGB-D methods, our framework achieves superior reconstruction quality
with high computational efficiency. Moreover, it integrates seamlessly with
various tracking systems, ensuring generality and scalability. Project page:
https://poiw.github.io/MODP/.
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1 Introduction
Online dense reconstruction, which generates environment mod-
els from a continuous stream of input images, is a fundamental
challenge in robotics, computer vision, and computer graphics. It
forms the cornerstone of interactive environmental understanding
and interaction, enabling a wide range of applications such as aug-
mented and virtual reality (AR/VR), robotics, and the emerging field
of spatial AI. By processing sensor data streams to interactively
reconstruct environments, it provides immediate feedback to the
scanner, facilitating downstream tasks like scene understanding,
active reconstruction, and more.
Previous works have explored various map representations, in-

cluding point clouds [Du et al. 2011], surfels [Keller et al. 2013;
Whelan et al. 2015], and signed distance functions [Newcombe et al.
2011], to achieve high-quality geometry reconstruction in Simulta-
neous Localization and Mapping (SLAM) systems. However, these
methods often fall short in reconstructing photorealistic appear-
ances due to the limitations of their map representations, as their
primary focus is on geometric accuracy rather than visual realism.
The recent success of neural radiance fields (NeRFs) in view syn-
thesis [Mildenhall et al. 2020] has paved the way for photorealistic
scene reconstruction. NeRF-based methods [Johari et al. 2023; Sand-
ström et al. 2023; Sucar et al. 2021; Wang et al. 2023; Yang et al.
2022; Zhu et al. 2024, 2022], when integrated into SLAM systems,
mark a significant breakthrough in enhancing reconstructed maps
with highly realistic appearances. However, these methods face chal-
lenges in achieving interactive frame rates for both reconstruction
and rendering due to the computational demands of ray marching in
volumetric rendering. Additionally, their highmemory requirements
make it difficult to scale effectively to large scenes. In contrast, 3D
Gaussian representations [Kerbl et al. 2023] model scenes as discrete
Gaussian distributions, offering dramatically faster rendering and
optimization speeds. This allows reconstructed scenes to be visual-
ized at real-time frame rates. Recent works [Bai et al. 2024; Ha et al.
2025; Huang et al. 2024; Keetha et al. 2024; Matsuki et al. 2024; Sand-
ström et al. 2024; Yan et al. 2024; Yugay et al. 2023; Zhang et al. 2024]
have demonstrated that 3D Gaussian-based SLAM can produce high-
quality reconstruction maps, achieving superior rendering quality
compared to earlier non-radiance-field-based methods.

Dense SLAM systems can process various types of input streams.
3D Gaussian-based dense SLAMs with RGB-D inputs [Ha et al. 2025;
Matsuki et al. 2024; Peng et al. 2024; Wang et al. 2024] achieve high-
quality scene reconstruction, as the availability of accurate depth
data allows Gaussians to be initialized near optimal locations. This
facilitates rapid convergence with precise geometry and appearance.
However, the reconstruction quality deteriorates significantly when
relying solely on color frames (monocular input). Poor initializa-
tion of Gaussians often leads to independent optimization getting
trapped in local minima, resulting in artifacts such as floaters and
blurriness. In contrast to offline methods [Kerbl et al. 2023], which
benefit from accurate camera poses and global optimization of the
entire scene, incremental reconstruction in online SLAM systems
faces challenges such as limited computational resources and the
absence of global information. These issues lead to inconsistencies
and lower-quality global maps. As a result, achieving photorealistic

online reconstruction without depth maps remains a significant
challenge.
In this paper, we aim to achieve photorealistic reconstruction

using only monocular RGB frames, addressing two key challenges:
the lack of dense depth maps and the need to produce globally
consistent maps at interactive frame rates. Our key insight lies in
controlling the distribution of Gaussians in world space based on
error maps and feature complexity in image space. Furthermore, we
design a multi-level occupancy hash voxel structure to regulate the
distribution across different levels, ensuring coarse and fine details
are recovered. In addition, we propose a view selection strategy that
balances the reconstruction of newly observed local regions with
the preservation of historical global maps, effectively avoiding local
minima during optimization.
We evaluate our pipeline on standard datasets, including

TUM [Sturm et al. 2012] and Replica [Straub et al. 2019], where
it demonstrates superior reconstruction quality compared to previ-
ous monocular baselines and surpasses most RGB-D baselines. To
further validate its capability to handle scenes with varying levels of
detail for scenes in different scales, we capture additional indoor and
outdoor sequences with complex geometries using Aria glass [Engel
et al. 2023]. Moreover, our proposed mapping system is designed to
be compatible with various tracking systems, highlighting its versa-
tility. We showcase the generality of our approach by integrating it
with different tracking systems, such as those in [Campos et al. 2021;
Engel et al. 2023], demonstrating its scalability and effectiveness.

2 Related works

2.1 Classic Dense Visual SLAM
Over the last decade, dense visual SLAM-based 3D scene recon-
struction has been a prominent research focus. For a comprehen-
sive overview, readers are referred to detailed state-of-the-art sur-
veys [Fuentes-Pacheco et al. 2015; Macario Barros et al. 2022; Zoll-
höfer et al. 2018] and foundational theses [Newcombe 2012]. Signif-
icant advancements in online 3D scene reconstruction have been
achieved in RGB-D dense SLAM, employing diverse map repre-
sentations such as point clouds [Du et al. 2011], Hermite radial
basis functions [Xu et al. 2022], surfels [Cao et al. 2018; Keller et al.
2013; Whelan et al. 2015], and truncated signed distance functions
(TSDFs) [Chen et al. 2013; Dai et al. 2017; Huang et al. 2021a; New-
combe et al. 2011; Nießner et al. 2013; Zhang et al. 2015]. For instance,
ElasticFusion [Whelan et al. 2015] models scenes as collections of
surfels, leveraging surfel-rendered depth and color for high-quality
real-time tracking. TSDF-based BundleFusion [Dai et al. 2017] recon-
structs large-scale scenes in real time through dynamic surface rein-
tegration, achieving globally consistent 3D maps. DI-Fusion [Huang
et al. 2021b] incorporates scene priors by encoding local geometry
and modeling uncertainty using deep neural networks. While these
methods focus primarily on geometric reconstruction, our approach
simultaneously addresses surface reconstruction and photorealistic
rendering, bridging the gap between accurate geometry and visu-
ally realistic output. Moreover, these prior methods rely heavily on
depth maps to achieve high-quality reconstruction. In contrast, our
approach operates using only a monocular RGB stream, making it
more versatile and accessible.
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Fig. 2. The figure illustrates an overview of our method. Our approach takes inputs from the tracking system and generates initial Gaussians based on
regions with high geometric or texture complexity and significant errors (Sec. 3.2.2). Next, the MOHV module (Sec. 3.2.3) removes redundant Gaussians while
preserving a high-quality map. Finally, the global consistency optimization module optimizes the Gaussians to produce a globally consistent map with details
across various levels.

2.2 NeRF-based Dense Visual SLAM
Building upon the remarkable success of neural radiance fields
(NeRF) [Mildenhall et al. 2020], recent works have integrated NeRF
with RGB-D and RGB-only dense SLAM systems. In RGB-D SLAM,
iMap [Sucar et al. 2021] pioneers NeRF SLAM by using a single MLP
to represent the scene. NICE-SLAM [Zhu et al. 2022] introduces
hierarchical feature grids decoded with pre-trainedMLPs, while Vox-
Fusion [Yang et al. 2022] represents scenes as voxel-based neural
implicit surfaces stored in octrees. State-of-the-art methods, such
as ESLAM [Johari et al. 2023] and Co-SLAM [Wang et al. 2023],
adopt multi-resolution hierarchical structures to balance quality
and performance, using feature grids and hash grids, respectively.
Point-SLAM [Sandström et al. 2023] takes an alternative approach,
leveraging neural point clouds with volumetric rendering and fea-
ture interpolation. For RGB-only SLAM, NICER-SLAM [Zhu et al.
2024] enhances accuracy and robustness by incorporating additional
supervision signals, such as monocular geometric cues and optical
flow, to jointly optimize camera poses and hierarchical neural im-
plicit maps. While these methods deliver impressive results, their
reliance on computationally intensive volumetric rendering limits
interactive or real-time performance for online reconstruction of
real-world scenes. Furthermore, their high memory requirements
make reconstructing large-scale scenes impractical. In contrast, our
method enables interactive reconstruction of large-scale scenes,
offering significantly higher speeds and reduced memory costs.

2.3 3D Gaussian-based Dense Visual SLAM
Recently, 3D Gaussians [Kerbl et al. 2023] have gained traction as
an efficient alternative for map representation in RGB-D and RGB-
only dense SLAM systems. Traditional 3D Gaussian optimization,
typically performed offline, requires several minutes to complete.
To enable online reconstruction in RGB-D SLAM, methods such
as [Wang et al. 2024; Yan et al. 2024; Yugay et al. 2023] introduce
novel Gaussian seeding and optimization strategies for sequential
input streams. SplaTAM [Keetha et al. 2024] incorporates Gaussian-
based representations with silhouette-guided optimization via differ-
entiable rendering. MonoGS [Matsuki et al. 2024] extends Gaussian
representations for accurate tracking, mapping, and high-quality

rendering in both RGB-D and RGB-only scenarios. More recently,
RTG-SLAM [Peng et al. 2024] introduces a compact Gaussian repre-
sentation with a highly efficient on-the-fly optimization scheme
for RGB-D inputs, achieving real-time online scene reconstruc-
tion. GS-ICP SLAM [Ha et al. 2025] combines Generalized Iterative
Closest Point (G-ICP) with 3D Gaussian Splatting (3DGS) to fur-
ther enhance real-time RGB-D SLAM performance. For RGB-only
SLAM, Photo-SLAM [Huang et al. 2024] utilizes a Gaussian-Pyramid
training approach to improve mapping with multi-level features.
Splat-SLAM [Sandström et al. 2024] dynamically adapts to keyframe
pose and depth updates by deforming the 3D Gaussian map, en-
suring globally optimized tracking and enhanced reconstruction
accuracy. HI-SLAM2 [Zhang et al. 2024] combines monocular priors
with learning-based dense SLAM to improve geometry estimation,
achieving significant advancements in quality and performance for
RGB-only SLAM. Some other concurrent works [Bai et al. 2024; Feng
et al. 2024; Hu et al. 2024; Tianci et al. 2025] also attempt to recon-
struct high-quality scenes from a monocular stream; however, none
of them show very fine detailed reconstruction. Compared to these
existing methods, our approach aims to achieve an optimal balance
between reconstruction quality and performance. Quality-wise, our
method excels in preserving fine details, significantly outperform-
ing all RGB-only approaches and surpassing most RGB-D-based
methods on standard datasets [Straub et al. 2019; Sturm et al. 2012].
Performance-wise, it delivers interactive online reconstruction.

3 Methods
The high-level ideas of our design are based on two key observa-
tions: the importance of good Gaussian initialization and the need for
global consistency optimization. With only monocular input, achiev-
ing a well-initialized Gaussian distribution through regularization
is crucial to decrease artifacts, including floater and over-blurriness,
where we propose our Hierarchical Gaussian Management mod-
ule (Sec. 3.2) with a densification strategy (Sec. 3.2.2) and a pruning
mechanism through MOHV (Sec. 3.2.3). Building on this solid ini-
tialization, we propose Global Consistency Optimization (Sec. 3.3)
to balance local rapid convergence with global consistency. An
overview of our method is presented in Fig. 2.
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Reference Online Rendered Error map Initialized points

Fig. 3. A visualization of pixels used for initialization. In the error map,
red regions indicate high-error areas. In the right-most image, red points
represent pixels used for error compensation, while blue points correspond
to pixels in geometry- or texture-complex regions.

3.1 Tracking
Our method emphasizes a high-quality mapping system while en-
suring compatibility with various tracking systems. We use ORB-
SLAM3 [Campos et al. 2021] as an example tracking system in our
pipeline, where it provides online camera poses 𝑐𝑖 and sparse world
space feature points 𝑃𝑖 to our system. Additional results using dif-
ferent tracking systems will be presented in Sec. 4.7, showcasing
the generalization and robustness of our mapping system. Note that
we do not discuss the quality of different tracking systems, as our
focus is on the mapping system.

3.2 Hierarchical Gaussian Management
Our pipeline uses 3D Gaussians [Kerbl et al. 2023] as scene repre-
sentations, where the initialization and distribution of 3D Gaussians
are critical, as each Gaussian is optimized independently. Previous
RGB-D SLAM works [Ha et al. 2025; Matsuki et al. 2024; Peng et al.
2024] rely on depth maps to precisely initialize Gaussians, achiev-
ing higher reconstruction quality compared to methods using only
RGB inputs [Huang et al. 2024; Matsuki et al. 2024; Sandström et al.
2024; Zhang et al. 2024]. Instead, we propose a hierarchical Gaussian
management module to avoid issues such as floaters and missing
details caused by local minima. This module computes Gaussian
and camera scales, strategically distributing Gaussians to geometry-
complex and high-error regions to capture geometry and texture
details better. Furthermore, to address redundancy or insufficiency
in Gaussian placement across varying levels of scene detail, we
propose a Multi-level Occupancy Hash Voxel (MOHV) structure.
MOHV dynamically regulates Gaussian density at different scales,
enabling high-quality reconstruction of fine details while maintain-
ing computational efficiency.

3.2.1 Camera and Gaussian Scales. Gaussian scales are critical in
the optimization process: excessively large scales cause over-blurred
results, while excessively small scales hinder convergence. To effec-
tively capture details at varying levels with appropriate scales, we
define the scales of both the camera and Gaussians in world space.
Specifically, given the camera’s focal length 𝑓𝑖 and the pixel’s depth
value 𝑑𝑡 (from the tracker), the Gaussian size corresponding to such
a pixel is calculated using the approach detailed in Yu et al. [2024].

𝑠𝑡 =
𝑑𝑡

𝑓𝑖
+ 𝜀 (1)

where 𝑠𝑡 represents the size of the corresponding Gaussian in world
space, and 𝜀 is a constant scalar. The scale of a camera view is set as
the median value of the scales of all its sparse feature points.

3.2.2 Gaussian Densification. Previous works densify Gaussians
mainly based on gradient magnitude [Kerbl et al. 2023] without ex-
plicitly targeting high-frequency regions with complex geometries
and textures. In contrast, our approach leverages image-space infor-
mation to directly initialize newGaussians in the areas characterized
by complex geometries, intricate textures, and high errors. An exam-
ple of this initialization process is illustrated in Fig. 3. Specifically,
we initialize new Gaussians from pixels in the following regions:

Geometry/texture complex regions. Tracking systems extract fea-
ture points from each frame to calculate the camera poses. These
feature points are often located on high-contrast boundaries, which
generally correspond to complex geometries or textures and require
more Gaussians for accurate reconstruction. In contrast, textureless
areas contain fewer feature points and consequently demand fewer
Gaussians for reconstruction. Leveraging the feature point distri-
bution from the tracking system provides a balanced approach to
handling both high-frequency and low-frequency regions.

High error regions. In addition to the tracked feature points,
some regions with rich textures or complex geometries may still
lack sufficient Gaussians. To address this, we calculate the SSIM
(structural similarity index measure) between the rendered im-
ages 𝐼𝑖 and the observed ground truth images 𝐼𝑖 . Additional 𝑘
pixels for each keyframe are compensated in regions defined as
𝑃𝑖 = {𝑝𝑡 ∈ R3 |𝑆𝑆𝐼𝑀 (𝐼𝑖 , 𝐼𝑖 ) [𝑡] < 𝜀𝑒 }, where 𝜀𝑒 is a predefined
threshold. The depth values for these pixels are estimated using a
pre-trained model [Dexheimer and Davison 2023]. Notably, since
we only require a few sparse points to compensate for these re-
gions, computing a complete depth map for all pixels is unnecessary.
This approach is significantly faster and contrasts with other meth-
ods [Sandström et al. 2024; Zhang et al. 2024] that rely on pre-trained
models to predict full-depth maps.

3.2.3 Multi-level Occupancy Hash Voxel. Directly using all points
in 𝑃𝑖 and 𝑃𝑖 often leads to redundant and overlapping Gaussians, as
many tracked points are clustered in similar positions. Additionally,
scenes with varying levels of detail require dynamic adjustments: in-
creasing Gaussian density in detailed regions, such as when zooming
in, while avoiding excessive Gaussians in coarser areas. To elimi-
nate redundancy and maintain efficiency, we propose a Multi-level
Occupancy Hash Voxel (MOHV) structure to effectively remove
redundant Gaussians and dynamically regulate their distribution in
the world space across different levels.
𝐾-nearest neighbors remove redundant Gaussians by rejecting

those within a threshold distance of each other, but this approach
becomes increasingly slow as the number of Gaussians grows in
larger scenes. While occupancy voxels enable fast location queries
to determine whether a position is occupied, their high memory
requirements limit the resolution of fine-level voxels. To overcome
these challenges, we adopt a multi-level hash structure inspired
by Instant-NGP [Müller et al. 2022], which significantly reduces
the memory consumption of occupancy voxels by leveraging the
sparsity inherent in reconstructed scenes. The MOHV module is
defined by three parameters: number of levels 𝐿, initial scales 𝑆init
for the coarsest level scales, and number of voxels per dimension
𝑛, resulting in a total of 𝑛3 voxels for each level. The total memory
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Fig. 4. The high-level concept of MOHV. It updates and queries multi-level
voxels up to a given level 𝑙 to maintain Gaussian distributions for capturing
details at various levels.

cost of this structure is only 𝑂 (𝐿𝑛3). At the same time, it achieves
a voxel resolution of 𝑆init/2𝐿 , as each successive level represents
double the resolution of the previous one.
Fig. 4 illustrates the high-level concept of the query and update

operations in the MOHV module. When updating a position as
occupied, the module marks all corresponding voxels up to the spec-
ified level, ensuring that finer-level occupancy remains unaffected.
When querying a position, the module performs an AND opera-
tion on all occupancy information from the coarsest level to the
specified level. This ensures that updates to finer occupancy levels
are reflected in queries at coarser levels, aligning with our design
objectives. Detailed algorithmic descriptions are provided in the
supplementary.
Finally, MOHV removes Gaussians {𝑃𝑖 , 𝑃𝑖 } located in occupied

positions and updates its structure for the remaining Gaussians. The
remaining Gaussians are initialized and added to the scene map
with corresponding world positions, scales calculated through Eq. 1,
and colors with corresponding pixels.

3.3 Global Consistency Optimization
After distributing Gaussians in world space, their optimization is
guided by selected views. Achieving a balance between local and
global maps is challenging, as it requires both rapid convergence in
newly observed regions and the preservation of previously recon-
structed areas. To address this, the global consistency optimization
module jointly optimizes Gaussians and online camera poses, en-
suring a globally consistent reconstruction. This is accomplished
through a carefully designed view selection strategy and optimiza-
tion process, consisting of the following components:

3.3.1 Keyframe Selection. Using all frames for global optimization
is redundant and usually yields lower quality. Instead, we select a
subset of frames as keyframes for our global optimization. A frame
𝑖 is added as a keyframe if the overlap ratio covis(𝑖, 𝑗) between the
current frame 𝑖 and the previous keyframe 𝑗 is below a threshold
or if 𝑡𝑘 frames have elapsed since the last keyframe, accounting for
textureless regions. The overlap ratio is calculated using tracked
points instead of Gaussians to improve computational efficiency.

Fig. 5. High-level concept of optimization view selection. Our method sam-
ples local views based on covisibility, and global views based on their L1
error values and distance to the current view.

3.3.2 Optimization View Selection. Unlike offline 3DGS optimiza-
tion [Kerbl et al. 2023], where all Gaussians are optimized simulta-
neously, online mapping requires incremental optimization. This
makes it essential to balance newly observed views with historical
ones. As shown in Fig. 5, we propose a local and global camera
selection strategy to achieve fast convergence for new frames while
maintaining global consistency in previously reconstructed regions.
Given the current view camera 𝑐𝑖 , the local and global cameras are
defined as:

Local Cameras. Local cameras aim to optimize newly observed
regions with multi-view constraints. In our experiments, we set
the number of additional local views, 𝑛local, to 1, in addition to the
current view. To ensure sufficient overlap with the current view, we
maintain a local bank of size 𝑛local. A new frame is added to the
bank every 𝑡local frames and the oldest frame is discarded once the
bank exceeds its maximum size. This bank selects the 𝑛local views
with the largest overlap with the current view for multi-view joint
optimization.

Global Cameras. Local views converge quickly but cannot ensure
a globally consistent map. Relying solely on local views often re-
sults in overfitting to specific regions, leading to poor global maps
due to forgetting issues and camera drift. To address this, we also
select 𝑛global views from historical keyframes. However, randomly
sampling from all historical keyframes creates an imbalance, with
earlier frames being selected more frequently than recent ones. To
mitigate this issue, we sample the historical keyframes based on the
following probability:

prob𝑖 [ 𝑗] = normalize(𝑒𝜎1 · ( 𝑗−𝑖 ) · 𝑒𝜎2 ·err( 𝑗 ) ), (2)

where err( 𝑗) refers to the Mean Absolute Error of frame 𝑗 , updated
every time frame 𝑗 is optimized. The first term in the probability dis-
tribution adjusts the selection to prioritize newly added keyframes,
while the second term emphasizes under-optimized keyframes.

3.3.3 Camera Refinement. Although the online tracking system
provides reasonably accurate camera poses, they are insufficient
for reconstructing high-quality maps. To enhance reconstruction
quality, we further optimize the poses of keyframes during the
mapping process.
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The scene’s Gaussian map is optimized for each keyframe using
rendering losses, incorporating the current view along with the
selected local and global views at every step. Further details on the
optimization parameters are provided in the supplementary.

4 Experiments

4.1 Dataset
To demonstrate the robustness of our pipeline, we evaluate our
method on three datasets: TUM-RGBD [Sturm et al. 2012], Replica
[Straub et al. 2019], as well as our own sequences captured using
Aria glasses [Engel et al. 2023]. The TUM-RGBD dataset consists
of real-world RGB-D images but includes challenging sequences
with severe motion blur, which often degrade reconstruction quality.
The Replica dataset provides highly accurate depth maps since it
is re-rendered from reconstructed 3D models. Additionally, we use
Aria glasses to capture indoor and outdoor sequences with vary-
ing geometric complexity. All frames captured with Aria glasses
undergo consistent pre-processing operations before being tested
on our pipeline and baselines, ensuring a fair comparison.

4.2 Baselines
We compare our method against existing dense SLAM baselines,
including both monocular and RGB-D approaches. Specifically, we
compare with prior works [Huang et al. 2024; Matsuki et al. 2024;
Sandström et al. 2024] for monocular SLAM baselines and [Ha et al.
2025; Matsuki et al. 2024; Peng et al. 2024] for RGB-D SLAM base-
lines. We also compare with concurrent work [Zhang et al. 2024] us-
ing their released codes. For our custom-captured sequences, where
depth maps are unavailable, we compare with monocular baselines
only. To ensure fairness, all evaluations are performed on the full
sequence of images at their original resolution.

Note that several methods (MonoGS [Matsuki et al. 2024], Splat-
SLAM [Sandström et al. 2024], Hi-SLAM2 [Zhang et al. 2024]) in-
clude a post-refinement step unrelated to the online reconstruction
process. To ensure a fair comparison, we evaluate the results both
before and after the post-refinement step separately. For Aria se-
quences, we run 26𝐾 steps for baselines in the post-refinement,
while our method uses only 1𝐾 post-refinement steps for all scenes
since it is not an essential step for ours.

4.3 Mapping and RenderingQuality
Our main objective is to reconstruct high-quality maps with a pho-
torealistic appearance. Table 1 presents a quantitative comparison
of our pipeline against existing monocular and RGB-D baselines.
We use peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [Wang et al. 2004], and perceptual similarity (LPIPS) [Zhang
et al. 2018] as our evaluation metrics. PSNR and SSIM measure over-
all reconstruction quality, while LPIPS emphasizes the preservation
of fine details.
Our method outperforms all monocular baselines and surpasses

RGB-D baselines in real-world captured scenarios. While RGB-D
methods excel on the synthetic Replica dataset, which provides
perfect depth maps, their quality degrades in real-world cases with
imperfect depth data. The Aria dataset, specifically captured to test
scenes with varying levels of detail, highlights ourmethod’s superior

Table 1. Comparison of reconstruction rendering quality on different
datasets. Bold refers to the best across all categories and green refers to
the best of each category. Numbers of RTG-SLAM (Replica), GS-ICP (TUM
and Replica) and Photo-SLAM (TUM and Replica) are taken from their
original papers. Other numbers are calculated through their released codes.

Methods Metrics TUM Replica Aria

RG
B-
D

MonoGS
PSNR 17.90 36.67 n/a
SSIM 0.716 0.958 n/a
LPIPS 0.322 0.072 n/a

RTG-
SLAM

PSNR 19.44 35.43 n/a
SSIM 0.760 0.982 n/a
LPIPS 0.408 0.109 n/a

GS-
ICP

PSNR 20.72 38.83 n/a
SSIM 0.768 0.975 n/a
LPIPS 0.218 0.041 n/a

M
on

oc
ul
ar

MonoGS
PSNR 17.54 27.38 18.34
SSIM 0.698 0.860 0.475
LPIPS 0.341 0.261 0.700

Photo-
SLAM

PSNR 20.54 33.30 23.40
SSIM 0.720 0.926 0.615
LPIPS 0.211 0.078 0.477

Splat-
SLAM

PSNR 22.34 30.37 21.58
SSIM 0.731 0.886 0.561
LPIPS 0.353 0.221 0.606

Hi-
SLAM2

PSNR 20.09 30.74 19.60
SSIM 0.680 0.897 0.520
LPIPS 0.379 0.208 0.675

Ours
PSNR 25.45 35.85 26.15
SSIM 0.866 0.956 0.678
LPIPS 0.165 0.071 0.338

M
on

oc
ul
ar

(w
Po

st
Re

fin
em

en
t) MonoGS

PSNR 22.04 30.13 21.05
SSIM 0.737 0.900 0.555
LPIPS 0.326 0.193 0.662

Splat-
SLAM

PSNR 25.53 33.72 24.44
SSIM 0.801 0.938 0.618
LPIPS 0.251 0.117 0.490

Hi-
SLAM2

PSNR 23.52 36.69 25.64
SSIM 0.805 0.953 0.665
LPIPS 0.242 0.113 0.414

Ours
PSNR 26.18 36.89 26.62
SSIM 0.874 0.962 0.693
LPIPS 0.154 0.061 0.324

performance, particularly in LPIPS, demonstrating enhanced detail
preservation compared to other baselines.
Qualitative comparisons are shown in Fig. 7, Fig. 8, and Fig. 9.

In complex and challenging scenes with varying detail levels, our
pipeline reconstructs significantly better details, while other base-
lines produce overly blurred results, even after applying a global
post-refinement process.
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Table 2. Tracking accuracy of different monocular baselines and our meth-
ods. Numbers represent absolute trajectory error (ATE) root mean square
error (RMSE) in cm. All baseline numbers are taken from their original paper
except Hi-SLAM2 (TUM) and MonoGS (Replica) since they didn’t include
those trajectory accuracy in their paper.

MonoGS PhotoSLAM SplatSLAM
TUM 3.96 1.26 1.1
Replica 22.03 1.09 0.35

Hi-SLAM2 ORB-SLAM3 Ours
TUM 1.32 1.98 1.87
Replica 0.26 3.88 3.75

Table 3. Speed performance of differentmethods. Numbers represent frames
per second (FPS).

TUM Replica Aria
MonoGS 2.91 1.43 1.85
Photo-SLAM 65.87 41.65 10.02
Splat-SLAM 3.62 1.01 0.46
Hi-SLAM2 13.99 15.08 3.35
Ours 11.28 9.34 4.55

Table 4. Time breakdown of each component. The reported numbers repre-
sent the percentage of time consumed by each component relative to the
overall process. "Others" primarily includes data transfer and preprocessing
operations.

Optim Cam Select Depth Est. MOHV Others
PCT (%) 91.44 0.79 1.63 0.87 5.27

4.4 Tracking Accuracy
Although our framework is designed to be compatible with vari-
ous tracking systems and does not specifically focus on tracking
accuracy, we analyze the tracking performance to better understand
its impact on the quality of our online reconstruction framework.
Table 2 presents the tracking errors of different methods. While
our framework exhibits slightly lower tracking accuracy, it consis-
tently delivers higher-quality reconstruction maps, demonstrating
the effectiveness of our online reconstruction pipeline. Improving
integration with tracking systems is left for future work to further
enhance reconstruction quality.

4.5 Speed Performance
All experiments were conducted on a Fedora machine with an AMD
Ryzen Threadripper PRO 3975WX and an NVIDIA RTX 4090. As
shown in Table 3, our method achieves approximately 10 FPS on
small-scale scenes (TUM and Replica) and around 5 FPS on relatively
larger scenes (Aria) while maintaining high reconstruction quality.
Note that Photo-SLAM [Huang et al. 2024], implemented entirely
in C++, is several orders of magnitude faster than other pipelines
built with Python.

Table 5. Ablation studies of our Gaussian management module. Numbers
are averaged from all Aria sequences. Bold refers to the best and underline
refers to the second best.

PSNR SSIM LPIPS # Gaussians
w/o EC 24.87 0.647 0.407 123,396
w/o MOHV 26.04 0.680 0.333 445,764
w/o EC & MOHV 25.30 0.661 0.375 221,370
Ours full 26.15 0.678 0.338 340,962

w/o EC w/o EC & MOHV Ours full Reference

Fig. 6. Ablation studies of Gaussian management module. MOHV refers to
Multi-level Occupancy Hash Voxels and EC refers to Error Compensation.
Zoom in for details.

A detailed time breakdown is provided in Table 4, demonstrating
that our global camera selection, depth estimation, and MOHV
modules are sufficiently efficient and do not constitute the pipeline’s
bottleneck. Additional details can be found in the supplementary
material.

4.6 Ablation Studies
In this section, we perform comprehensive ablation studies to eval-
uate the effectiveness of individual modules in our framework. As
our designs primarily focus on reconstructing details across various
levels of the scene, the ablation studies are conducted on the Aria
sequences, which feature scenes with diverse geometric complexity.

Error region compensation. Tracking systems without dense depth
maps typically provide only sparse 3D tracked points, which are
insufficient for reconstructing fine details. Our error region com-
pensation module adds supplementary points in high-error and
under-optimized regions. As illustrated in Fig. 6, incorporating error
region compensation enhances detail in areas where tracked points
are sparse or missing. Without it, the textures on the bookshelf
and the details on the plant are noticeably missing in Fig. 6. Note
that while increasing the number of tracked points by adjusting
the tracking system’s threshold is possible, doing so may adversely
affect the overall tracking quality.

Multi-level occupancy hash voxel. The MOHV module removes re-
dundant Gaussians within local regions based on camera scales. As
shown in Table. 5 and Fig. 6, although with about 100K more Gaus-
sians, the final reconstructed quality does not noticeably improve.
This demonstrates that MOHV preserves reconstruction quality
while reducing the number of Gaussians by approximately 30%. By
effectively controlling the growth of Gaussians, this module enables
scalability to large-scale scenes without redundant overhead.
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Table 6. Ablation studies of our global consistent optimizationmodule.Bold
refers to the best.

PSNR SSIM LPIPS
w/o global cams 17.68 0.460 0.595
w/o cam refinement 25.52 0.666 0.341
Ours full 26.15 0.678 0.338

Table 7. Comparison of rendering quality on reconstructed maps with dif-
ferent tracking systems and offline 3DGS on Aria sequences. PR. refers to
the post-refinement process. PR. steps in offline 3DGS refers to the total
optimization steps.

PSNR SSIM LPIPS PR. Steps # Gs Time
Ours 26.15 0.678 0.338 0 341K 4m1s
Ours (w PR.) 26.62 0.693 0.324 1K 341K 4m56s
Ours (w PR.) 27.44 0.711 0.297 20K 341K 9m32s
Ours (Aria) 25.07 0.659 0.330 0 700K 3m55s
Ours (Aria, w PR) 25.67 0.675 0.315 1K 700K 4m32s
Ours (Aria, w PR) 25.99 0.682 0.294 20K 700K 10m24s
Offline 3DGS 26.60 0.696 0.305 150K 1,781K 1h6m21s

Global view optimization. Global view optimization is essential
for maintaining a globally consistent map, preventing forgetting
issues, and balancing newly observed regions with previously re-
constructed ones. For fairness, we add the same number of local
views to ensure an equal optimization budget when global view op-
timization is removed. As shown in Table 6 and Fig. 11, the quality
of previously reconstructed regions significantly deteriorates when
the optimization focuses solely on newly observed regions.

Camera refinement. Camera refinement is used to globally opti-
mize both the Gaussians and keyframes camera poses to improve
reconstruction quality. As shown in Fig. 12, joint camera refinement
improves the details in the reconstruction.

4.7 Alternative Tracking Systems
Our framework is a general online mapping system, which is not
limited to the ORB-SLAM3 tracking system. In this section, we also
show the results of using the Aria tracking system [Engel et al. 2023]
which uses Aria’s two SLAM cameras and an inertial measurement
unit (IMU) to perform stereo tracking. Notably, our mapping system
does not directly use SLAM cameras and IMU’s information and
only takes online tracked poses and sparse points as inputs to align
our monocular online reconstruction settings. Table. 7 and Fig. 10
compare our method using ORB-SLAM3 and Aria tracking systems.
The results demonstrate comparable performance across both sys-
tems. The slightly lower PSNR/SSIM scores with Aria tracking can
be attributed to its sparse feature points, which prioritize mid-range
objects over distant ones to enhance detail reconstruction. This ex-
periment highlights the robustness and versatility of our framework,
showcasing its compatibility with different tracking systems.

4.8 Post Refinement
Our method is designed for high-quality online reconstruction, with
the option of a post-refinement process to further enhance recon-
struction quality starting from the results of our online pipeline.
Table. 7 and Fig. 10 show our method with different steps in the
post-refinement process as well as the offline 3DGS baseline [Kerbl
et al. 2023]. Although offline 3DGS is a global optimization approach,
our methods with more post-refinement steps show better recon-
struction results while requiring less time and fewer Gaussians.

5 Conclusion
In this work, we present a high-quality online reconstruction
pipeline for reconstructing environments from monocular inputs.
Our pipeline incorporates a hierarchical Gaussian management
module and a global consistency optimization module, enabling the
maintenance of Gaussians to capture details across various levels
while remaining computationally efficient.

However, our method has certain limitations. One notable lim-
itation arises when the tracking system loses tracking or when
trajectory accumulation errors become significant. In the future,
our method could be improved by explicitly addressing significant
camera shifting issues through loop closure, extending the pipeline’s
applicability to even larger scenes.
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MonoGS
(w Post-refinement)

PhotoSLAM SplatSLAM
(w Post-refinement)

Hi-SLAM2
(w Post-refinement)

Ours Reference

Fig. 7. Qualitative comparison on Aria captured sequences. Our method captures finer details, while other baselines produce over-blurred results. Notably,
even after applying 26K post-refinement steps for the baselines, they still exhibit poorer details compared to our method. This demonstrates that high-quality,
fine-level details cannot be achieved solely by increasing the number of optimization iterations. Zoom in for more details.
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MonoGS
(w Post-refinement)

SplatSLAM
(w Post-refinement)

Hi-SLAM2
(w Post-refinement) Ours Reference

Fig. 8. Qualitative comparison on Replica dataset.

MonoGS
(w Post-refinement)

SplatSLAM
(w Post-refinement)

Hi-SLAM2
(w Post-refinement) Ours Reference

Fig. 9. Qualitative comparison on TUM dataset.

Ours-Aria Ours-Aria
(w 20K PR. steps)

Ours Ours
(w 20K PR. steps)

3DGS Reference

Fig. 10. Qualitative comparison of our methods with different tracking systems and offline 3DGS method. PR. refers to the post-refinement process.

w/o global w global w/o global w global

Frame 475 Frame 950

Fig. 11. Ablation studies of global view optimization.

w/o cam refinement w cam refinement Reference

Fig. 12. Ablation studies of camera refinement.
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