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Abstract

Fluid simulation has been one of the popular research topics in several areas, like
computational physics, mechanical engineering and computer graphics, etc. How-
ever, computational complexity of most current techniques heavily depend on the
simulation resolution. Even adaptive methods based on well-designed spatial par-
tition technique will be overwhelmed in some cases due to the complicated re-
construction of the data structure. Such non-uniform spatial discretization may
also lead to a non-symmetric linear system in the divergence free projection step,
which could be a severe problem for most efficient iterative sparse linear solvers
like preconditioned Conjugate Gradient, MINRES, etc. In this course project, we
present a kernel space method by projecting the original high dimension space
∼ R1003

to a low dimension space ∼ R10. By making use of learning based
Principal Component Analysis method (PCA), the Galerkin Projection operator,
which is a matrix in our case, can be found approximately. The learning data
comes from original high dimension simulation. Once we extract the projection
matrix from the training data, such costly simulation is no longer required. This
project only focused on efficient simulation and its analysis part, while the report
gave most of the mathematical proof details which is not described in the original
paper [8]. In addition to be regarded as a project report, it can also be taken as
a supporting document if you were confused by the magic math in the original
paper. For readers who are interested in how to add in user interaction and other
practical applications, we refer you to the original one.

1 Introduction

For the purposes of computer graphics, machine learning can be viewed as a set of techniques for
leveraging data. Given some data, we can model the process that generated the data. Then, we
can make more data that is consistent with this process, possibly with new, user-defined constraints.
In learning, we combine our prior knowledge of the problem with the information in the training
data. By employing existing ideas and techniques, we get the benefit of the collective experience of
the researchers who studied these problems in the past. Otherwise, we will waste substantial effort
reinventing the wheel. The idea of driving graphics from data is hardly new, and lots of researchers
in this field have already conducted very interesting work so far. Rubine [6] proposed a statistically
based recognition system of single stroke stylus gestures using a ”linear machine” classifier, which
determines the Bayes decision boundaries under the assumption of Gaussian distributions. Veach
et al. [9] used Markov Chain Monte Carlo sampling (MCMC) to approximate global illumination
integrals. Numerical simultion of physical based motion was demonstrated to be replaced with
neural network by Grzeszczuk et al. [3]. Recent computer graphics paper making use of machine
learning techniques includes data driven reflectance model [5], style based inverse kinematics [2],
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kernel space deformable object simulation [1], etc. Last year, Jakob et al. [4] shew impressive work
in solving difficult rough surface specular transport problem using MCMC. In general, the machine
learning technique and community have much to offer computer graphics.

This work present a way using learning based model reduction approach to speedup fluid simula-
tion. Offline physical based animation can produce stunning motion of fluid. However, realtime
applications generally simulate fluids only over small domains as a secondary effect. Fluid effects
distant from the user are usually simulated at very low resolution or not at all. In the future, how-
ever, we expect interactive virtual environments with millions of simultaneous users where complex
dynamic effects will play a primary role in the interaction: moving vehicles will splash through pud-
dles as buildings leave turbulent eddies in the wind. Enabling such applications requires that such
phenomena be computed everywhere with high resolution, and moreover that the dynamical state
be consistent for all users. The difficulty is computing high resolution dynamics over such large
environments. Existing fluid simulation approaches cannot scale to these large, realtime scenarios.
Our method attempts to fill this gap by running the simulation in an extremely low dimension space,
which we call kernel space, without sacrificing too much appealing detail, like vorticity and kinetic
engery preservation.

We only applied this method to 2D cases, but it is straightforward to convert it to 3D cases and more
speedup benefits should be gained as the computational cost grows cubically when increasing the
simulation resolution. Moreover, we merely explore the initial value problem (IVP) in the kernel
space, which means we assume the boundary condition for both original space during training step
and kernel space during test step should be exactly the same. To add in user interaction or dynamic
scene simulation, boundary value problem (BVP) in the kernel space should also be considered.
Even though the idea of external force inverse projection is easy to understand, we are not going to
explain it here as it is beyond the scope of our focusing material. For readers who are interested in
dealing with those problems, we refer you to Treuille et al.’s paper [8] for a thorough description.

2 Projection Based Model Reduction

2.1 Background Overview

Model reduction, sometimes also called dimensional model reduction or model order reduction, is
a technique to simplify the simulation of dynamical systems described by differential equations.
The idea is to project the original, high dimension, state space onto a properly chosen low dimen-
sion subspace to arrive at a much smaller system having properties similar to the original system.
Complex system can thus be be approximated by simpler system involving few equations and un-
known variables, which can be solved much more quickly than the original one. Such projection
based model reduction appears in literature under the names of Principal Orthogonal Directions
Method, or Subspace Integration Method, and it has a long history in the engineering and applied
mathematics literature.

Model reduction has been used extensively in the field of control theory, eletrical circuit simulation,
computational electromagnectis and microelectromechanical system. Most model reduction tech-
niques in these fields, however, aim at linear systems, and linear time invariant system in particular,
e.g. small perturbations of voltages in some complex nonlinear circuit. Another common charac-
teristics of these applications is that both input and output are low dimension, i.e., one may want to
study how the voltage level at some circuit location depends on the input voltage at another location,
in a complex nonlinear circuit. In computer graphics, however, one is often interested in nonlin-
ear system that exhibit interesting, visible, dynamics. The output in computer graphics is usually
high dimension, e.g., the deformation of an entire 3D solid object, or fluid velocities sampled on a
high resolution grid. For these reasons, many conventional reduction techniques do not immediately
apply to computer graphics problem.

2.2 Mathematical Intepretation

Here we provide a brief mathematical intepretation of model reduction mechanism. Suppose we
have a state vector x ∈ Rn describing the characteristic properties of our simulating subject. Instead
of representing the subject in a high dimension space Rn, we can describe it in a lower dimension
subspace Rm,m� n if features or dimensions in the origianl space are correlated. We can simply
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apply orthogonal projection P to the state vector x and get the reduced state vector r ∈ Rm, if the
error metric is based on l2 norm. Such projection operation allows us to move between the two
space, namely P : x 7→ r and P−1 : r 7→ x. What we have described so far is also regarded
as dimension reduction, which is very useful in statistics research. The terminology kernel space,
which corresponds to the low dimension subspace Rm, also comes from statistics.

However, we are interested not only in the state x, but also in its time evolution ẋ, typically described
by an ordinary differential equation (ODE) like the following,

ẋ(t) = F(x(t))

x(0) = x0
(1)

The operator F(·) in our case is linear, even though in general it could be nonlinear. Such an time
dependent ODE describe a dynamical evolution in Rn, which is time costly if we want to solve it
numerically by a computer. What we are seeking for is the corresponding operator F̂(·) that evolves
our reduced state vector r in the kernel space Rm,

˙r(t) = F̂(r(t))

r(0) = r0

(2)

To reach a formulation like Eqn. 2, we can start our derivation from Eqn. 1. Assume we already
know the projection mapping P, we can have

Px(t) = r(t)

x(t) ≈ P−1r(t) ≈ PT r(t)
(3)

By plugging the approximation of x(t) into Eqn. 1, we have

PT ṙ(t) = F(PT r(t)) + e(t) (4)

e(t) is the error term caused by the approximation and it’s time dependent, while the projection
operator is time invariant. Assume e(t) is constrained in a subspace of Rn, we then can introduce
another projection operator W satisfying

We(t) = 0 (5)

Range space of W, R(W), is simply the orthogonal complement of the subspace that e(t) lies in. Such
assumption is valid for most linear model F(·) due to the fact that their trajectories are contained in
low dimension subspaces. For a thorough description, we refer you to []. By applying projection
operator W onto both sides of Eqn. 4, it becomes

WPT ṙ(t) = WF(PT r(t)) + We(t) = WF(PT r(t)) (6)

Eqn. 6 is known as Petrov-Galerkin projection based equation. In particular, when W = P, this is
called Galerkin projection based equation. When P is orthogonal, this leads to

ṙ(t) = PF(PT r(t)) (7)

Thus we obtain the expression for the operator F̂(·),

F̂(·) = P ◦ F ◦ PT (·) (8)

The above derivation is not only valid in vector space but also valid in general Hilbert space like
Sobolev or Lebesgue space.
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3 Model Reduction of Fluid Simulation

We now show how we can apply the above model reduction technique to fluid simulation. In fluid
simulation, the fluid state at each time t is described by the velocity field u(t). For example, in 2D
case, it is just a 2D vector field. The evolution of such state is governed by well known nonlinear
partial differential equations (PDE), Navier-Stokes equations

u̇ = −(u · ∇)u− ν∇2u +∇p+ f (9)

∇ · u = 0 (10)

Since we only consider incompressible flow, momentum (Eqn. 9) and mass (Eqn. 10) conservation
are enough. Moreover, as we just focus on invisicid flow and IVP, we can get rid of the viscosity
term−ν∇2u and external force f at the moment. Finally, the dynamical PDE we are actually solving
is

u̇ = −(u · ∇)u +∇p
∇ · u = 0

(11)

Now we have the operator F(·) which is the right hand side of momentum conservation equation,
while mass conservation equation simply plays the role of removing ambiguities when shock hap-
pens due to nonlinear advection. To construct the kernel space operator F̂(·), we still need the
projection operator P. We adopt the PCA based method described in [8] to construct the projection
operator. In order to apply PCA, we first need to collect state samples from the full order space.
Before we move onto the kernel space, we perform a training step by solving Eqn. 11 in the full
order space and collect a set of example velocity fields {ui}. We applied Stable Fluid algorithm in
the training step, simply followed the time splitting scheme and did Semi-Lagrangian advection as
well as Poisson divergence free solve. For more details, we refer you to Jos Stam’s paper [7].

3.1 PCA Based Projection

In this section, we will provide the mathematical proof regarding how the PCA based projection
matrix comes from. In general, one can use any projection matrix as P. However, to make the
projection operator meaningful, one need to specify certain metric or error measurement that the
projection can minimize. Otherwise, the projection error will be unbounded. In our case, we use the
reconstruction error as our measurement which is

U− BBT U (12)

Here U is a n by s matrix whose column vectors are from our example velocity set {ui},ui ∈ Rn.
B is an unknown n by m orthonormal matrix which is the projection matrix P we are seeking for.
BBT U just means reconstruction from the subspace and we want to measure its distance from the
original one. We use squared Frobenius norm, which is the sum of elementwise square, as our
metric.

ζ = ‖U− BBT U‖2F (13)

Then we will show that in order to minimize ζ, B need to be constructed by the first m eigen vectors
of UUT .
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ζ = ‖U− BBT U‖2F = tr[(U− BBT U)(U− BBT U)T ]

= tr[UUT − UUT BBT − BBT UUT + BBT UUT BBT ]

= tr[UUT ]− tr[UUT BBT ]− tr[BBT UUT ] + tr[BBT UUT BBT ]

= tr[UUT ]− tr[UUT BBT ]− tr[UUT BBT ] + tr[BBT BBT UUT ]

= tr[UUT ]− 2tr[UUT BBT ] + tr[BIBT UUT ]

= tr[UUT ]− 2tr[UUT BBT ] + tr[UUT BBT ]

= tr[UUT ]− tr[UUT BBT ]

= tr[UUT ]− tr[BT UUT B]

(14)

Notice tr[UUT ] is the sum of all the eigen values of matrix UUT , which is nonegative as UUT is
semi positive definite. BT UUT B is also symmetric and thus semi positive definite. As a result, its
trace is also nonegative. Moreover, ζ is also nonegative. Thus we have

0 ≤ tr[BT UUT B] ≤ tr[UUT ] (15)

Thus to minimize ζ we need to maximize tr[BT UUT B] as tr[UUT ] is fixed. Then the prob-
lem becomes to a constrained optimization problem. To see it more clearly, let’s define B =
[b1,b2, . . . ,bm]. And we have the following

tr[BT UUT B] =

m∑
i=1

bT
i UUT bi (16)

Then we can formulate our optimization problem as following

maximize: f(b1,b2, . . . ,bm) =

m∑
i=1

bT
i UUT bi

s.t. bT
i bj = δij , i, j = 1, 2, ..., m

(17)

δ is the Kronecker delta. To solve such an optimization problem, we are going to use Lagrange
multiplier.

L(b1,b2, . . . ,bm) =

m∑
i=1

bT
i UUT bi +

m∑
i=1

λi(1− bT
i bi)−

∑
i6=j

µijbT
i bj

∂L

∂bi
= 2UUT bi − 2λibi −

∑
i 6=j

µijbj = 0

(18)

So far the problem is still hard to solve especially when we take the nonlinear constraints into
account. However, we can solve a less constrained problem instead getting rid of constraints bT

i bj =
0, i 6= j. And then we have

∂L

∂bi
= 2UUT bi − 2λibi = 0

UUT bi = λibi

(19)

This means we can obtain optimal for the less constrained problem when bi are eigen vectors of
UUT . Since those eigen vectors also satisfy the orthogonal constraints, they are also optimal solu-
tions to our original problem. To maximize our objective, we simply pick the first m eigen vectors
corresponding to the largest m eigen values, when our maximum is the sum of largest m eigen
values.
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3.2 Advection

In the kernel space, to linearize the advection operator, we use the conservation form of the advection
step.

u̇∗ = −(u · ∇)u∗ = −∇ · (uu∗) + u∗∇ · u (20)

As described in the original paper, our example velocities are divergence free. The linearity of the
projection operation keeps such property. Thus the conservation form becomes

u̇∗ = −∇ · (uu∗) (21)

Fig. 1 shows the MAC grid we used for storing velocities (on grid face) and other properties (on
grid center) like pressure, density or temperature.

u

v

ui,j

ui-1,j

ui+1,j

ui,j+1ui,j-1

vi,j-1 vi,j

vi+1,j-1 vi+1,j

p

Figure 1: Nine Point Scheme
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Figure 2: Sparsity Pattern

By discretizing the conservation form about each grid face, we can formulate our method by using
Nine Point discretization scheme

u̇∗i,j =
1

∆h
((uxu∗)i−1/2,j − (uxu∗)i+1/2,j + (uyu∗)i,j−1/2 − (uyu∗)i,j−1/2) (22)

Here ∆h is the grid spacing. By assuming ux and uy are known constant, we can linearize Eqn. 22
and formulate a linear system after grouping the equations together

u̇ = Auu (23)

As shown in Fig. 2, Au is a low bandwidth sparse matrix.

Then we need to derive the advection operator in the kernel space. Based on the Galerkin Projection
rule we show in the last section, the operator should look like

Â = BT AB (24)

However, as the advection operator itself depends on the velocity fluxes, the advection operator built
on the kernel space actually related to the basis of the subspace. Finally, we actually get an order
three tensor Ǎ as our advection operator

Ǎ = BT Aûi
B (25)

Here we use the Eistein summation convention and notice Aûi
itself is an order 2 tensor, which is a

matrix. To reconstruct this order 2 advection tensor in the kernel space, we need to contract it by the
kernel space state vector r, where u = Br

Â = Ǎ⊗1 r = riBT Aûi
B (26)

Then we have the advection equation in the kernel space, which is
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ṙ = Âr (27)

Thus at each timestep we will just take a linear combination of the m precomputed reduced advection
matrices BT Aûi

B to form the reduced advection matrix Â. Then we can show how to solve this
ODE symbolically as it has closed form analytical solution given initial condition r(0). The result
is obvious with the knowledge of matrix calculus, it’s

r = eÂtr(0) (28)

To see it more clearly, you can take the Taylor expansion of eÂt and plug it into the ODE and you will
get it proved. This is already enough for the IVP ODE problem actually. Given an initial velocity
field condition, one can get future velocity field at any time slice. However, the authors provided an
iterative form of the solution in the original paper, because they also want to handle BVP problem,
which means the velocity field might be changed due to external force pulse by user interaction or
whatever. Here we also follow their method and we will show how that iterative form comes from.

r(t+ ∆t) = eÂ(t+∆t)r(0)

r(t) = eÂ(t)r(0)

⇒ r(t+ ∆t) = eÂ(∆t)r(t)

(29)

eÂt = I + Ât+
1

2
Â

2
t2 +

1

3!
Â

3
t3 + . . .

⇒ eEΛE−1t = I + EΛE−1t+
1

2
EΛ2E−1t2 +

1

3!
EΛ3E−1t3 + . . . = EeΛtE−1

⇒ r(t+ ∆t) = EeΛ∆tE−1r(t)

(30)

4 Results

We did all the experiment using Matlab including full order Stable Fluid simulation, PCA and kernel
space simulation. We tried the popular Kármán Vortex Street as our verification test case. As our
experiment, by using the first 8 eigen velocity fields, the reconstructed velocity field from the kernel
space is able to cover most of the details in the full order simulation. With more eigen velocity fields
included, more minor details will be recovered. Here we show our first 8 eigen velocity fields in Fig.
3. They are from the full order space R1002

.

Then in Fig. 4.a and 4.b, we show the full order simulation result compared with the reconstructed
one from the kernel space. And in Fig. 4.c and 4.d, we visualize the two cases by advecting some
material in those velocity fields and make a comparision.
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Figure 3: First 8 Eigen Velocity Fields

5 Conclusion

As we have shown so far, the math of this method is quite beautiful. And the speedup achievement is
absolutely promising. It’s really a good example of incorporation of Machine Learning techniques
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(a) Full Order Simula-
tion
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(b) Kernel Space Sim-
ulation

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

(c) Full Order Simula-
tion

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

(d) Kernel Space Sim-
ulation

Figure 4: Results Comparision

into physical based simulation. However, one unpleasant thing came up during the project is to
decide how many eigen velocity fields are enough to achieve certain requirements is manually, which
is quite annoying to us. Even though we have the error metric for the projection in general, there
is no straightforward way to reach such explicit expression in our case. Moreover, such issue is not
mentioned in the original paper, either, which makes us feel so disappointed. For future work, we
are expecting to see solution to this problem.
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