
Copyright is held by the author/owner(s). 
SCA 2011, Vancouver, British Columbia, Canada, August 5 – 7, 2011. 
ISBN 978-1-4503-0923-3/11/0008 

Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011) Posters and Demos

Invertible Isotropic Hyperelasticity using SVD Gradients

Funshing Sin1 Yufeng Zhu1 Yongqiang Li1 Daniel Schroeder1,2 Jernej Barbič1
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Abstract
Implicit time integration methods are commonly used in deformable object simulations to alleviate the time step
restrictions. At each simulation time step, a tangent stiffness matrix is required to implicitly advance the system
forward in time. We present a method to compute the tangent stiffness matrix for the invertible finite element
method. The main advantage of our method is that it is able to simulate materials with strain energy functions
defined in terms of principal stretches. We demonstrate the robustness of our approach using the Ogden, Saint-
Venant Kirchhoff, and the rotated linear material models.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Physically
based modeling

1. Introduction

Degenerated and inverted tetrahedra would normally cause
numerical instability in the finite element methods. Irving
et al. [ITF04] proposed the invertible finite element method
(IFEM) to robustly handle element inversion. They decom-
pose the deformation gradient of each element using the
singular value decomposition (SVD), and then compute the
stress tensor based on the singular values such that it gives
internal forces restoring the deformations back to the rest
shape. To time step the simulation, they integrate the elastic
forces explicitly and damping forces implicitly. Because the
integration scheme is not fully implicit, the system is only
conditionally stable. Teran et al. [TSIF05] built upon IFEM
and developed a method to compute the stiffness matrix al-
lowing implicit integration. Their computation takes in ma-
terials where the strain energy Ψ = Ψ(I, II, III) is written in
terms of the invariants of C = FT F, where I = tr(C), II =
C : C, III = det(C), and F is the deformation gradient.

Many rubbery and biological materials are simulated with
material model based on principal stretches (such as Ogden)
because they account well for experimentally measured non-
linear stress-strain relationships. Those models are written in
terms of the three principal stretches λ1,λ2,λ3 instead of the
invariants I, II, III. Because λi are essentially the roots of
a monic cubic polynomial with coefficients I, II, III (Viète
formulas), derivatives of λi with respect to the invariants
become ill-defined when two (or all three) eigenvalues get

close together (such as in the rest configuration). Gao et
al. [GKJD09] described a method to compute the stiffness
matrix for such models by symbolically differentiating the
first Piola-Kirchhoff stress with respect to the deformation
gradient. However, the stiffness density function alone pro-

Figure 1: A dinosaur is deformed interactively at 28 fps with
∆t = 1/30 using the Ogden model. A horse collapses into a
plane and recovers from severe deformation using the ro-
tated linear model at 40 fps.
duces over 2500 line of C code, and different versions of
both stress and stiffness density functions have to be gener-
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ated for every possible execution path to avoid the divide-
by-zero errors when λi get close to each other. In this poster
we present an alternative method to compute the stiffness
matrix that works directly on the principal stretches based
material models. Our method is based on the SVD gradients
computation introduced by Papadopoulo et al. [PL00].

2. Force Computation

Following Irving et al. [ITF04], we compute the force on
a vertex i due to a single tetrahedron as gi = −Pbi, where
P ∈ R3,3 is the first Piola-Kirchhoff stress, bi = (A1N1 +
A2N2 +A3N3)/3, and A jN j are the area weighted material
normals. We express the nodal forces in a single tetrahedron
as G = PBm, where G = (g1,g2,g3), and Bm = (b1,b2,b3).

3. Stiffness Matrix Computation

The force gradient of a tetrahedron is:

∂G
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=
∂G
∂F

∂F
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∂P
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)
∂F
∂u
∈ R9,12 (1)

where u∈R12 is the displacement of the vertices, and ∂F/∂u
and Bm are constant matrices that do not change during the
simulation. The force gradient of the remaining vertex can
be calculated as ∂g0/∂u =−(∂g1/∂u+∂g2/∂u+∂g3/∂u).

Since P is rotationally invariant for isotropic materials, it
can be computed as:

P = P(F) = UP(F̂)VT
(2)

where F = UF̂VT
(from SVD). By the product rule:

∂P
∂Fi j

=
∂U

∂Fi j
P(F̂)VT

+U ∂P(F̂)
∂Fi j

VT +UP(F̂) ∂VT

∂Fi j
(3)

To compute ∂U/∂Fi j , ∂P(F̂)/∂Fi j, and ∂VT /∂Fi j, we
solve the following equation by taking the derivative of F
with respect to Fi j, and then multiply UT and V on the left
and right, respectively:

UT
(

∂F
∂Fi j

)
V = UT

(
∂U

∂Fi j
F̂VT

+U ∂F̂
∂Fi j

VT +UF̂ ∂VT

∂Fi j

)
V

=

UT ∂U
∂Fi j︸ ︷︷ ︸

ω̃
i j
U

 F̂+
∂F̂

∂Fi j
+ F̂


∂VT

∂Fi j
V︸ ︷︷ ︸

ω̃
i j
V T


(4)

Note that ∂Fmn/∂Fi j = 0 when (m,n) 6= (i, j), and 1 other-
wise. Matrices ω̃

i j
U and ω̃

i j
V T are antisymmetric. Since F̂ ∈

R3,3 is a diagonal matrix and the diagonal elements of ω̃
i j
U F̂

and F̂ω̃
i j
V T are zero, the three unknown entries of the diago-

nal matrix ∂F̂/∂Fi j can be set to the diagonal of the resulting

matrix on the left hand side (i.e., diag(UT (∂F/∂Fi j)V)). Ap-
plying the chain rule gives:
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Derivative ∂P(F̂)/∂λd = ∂
2
Ψ/∂λ

2
d is the Hessian of the elas-

tic energy. It can be computed analytically for any particular
material model.

The elements of ω̃
i j
U and ω̃

i j
V T can be computed by three

2x2 symmetric systems:[
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where k, l = 1,2,3, diag(F̂) = (λ1,λ2,λ3), (.)kl is the ele-
ment (k, l) of the matrix, uik = (U)ik, and vik = (V )ik. Fi-
nally, we compute ∂U/∂Fi j and ∂VT /∂Fi j as:

∂U
∂Fi j

= Uω̃
i j
U ,

∂VT

∂Fi j
= ω̃

i j
V T VT (7)

The system in (6) becomes ill-conditioned if λk ≈ λl . We
apply the Tikhonov regularization when the absolute differ-
ence between λk and λl is smaller than 10−6.

4. Results

We tested our method on two examples in Figure 1. The di-
nosaur and the horse are embedded into tetrahedral meshes
(1031 and 2646 elements respectively) allowing fast physics
with detailed surface features. Implicit backward Euler is
used in both examples.

We implemented the method presented by Teran et al.
[TSIF05] and found that our method works as fast as
theirs. Our method took 0.00264 sec on average to compute
the stiffness matrix for the principal stretch based StVK,
whereas their method took 0.00333 sec for the invariant
based StVK. The timing info was measured on a six-core
3.33 GHz Intel i7 CPU with 9GB RAM.
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